

Environmental Site Assessment 213A Kings Cross Road, Cabramurra NSW 2629 Prepared for: Selwyn Snow Resort Pty Ltd

Department of Planning and Environment

Issued under the Environmental Planning and Assessment Act 1979

Approved Application No DA 22/5248

Granted on the 27 May 2022

Signed D James

Sheet No 11 of 30

ST-01-1482 / ESA V1 Final 24th May 2022

Document Summary			
Client	Selwyn Snow Resort Pty Ltd		
Title	Environmental Site Assessment		
Address	213A Kings Cross Road, Cabramurra NSW 2629		
Report No	ST-01-1482/ESA		
Version	V1 Final		
Date of issue	24 th May 2022		
Distribution	Selwyn Snow Resort Pty Ltd., K2's Electronic storage system		

Document Status					
Revision No	Prepared by	Reviewed by	Issue Date		
Revision 1 Final	Kannan Kaliappan	Dr. Dawit Bekele	24.05.2022		

Document Co	ontrol	
Report prepared by	Kannan Kaliappan Principal Environmental Consultant Certified Environmental Practitioner CEnvP ID: 1540	ENVIRON 2017/2027 CONTROL 2017/2017 CONTROL 2017
Report authorised by	Dr. Dawit Bekele Principal Environmental Scientist Certified Site Contamination Specialist CEnvP-SC (ID. SC41149)	CONTAINE STATISST STATIS STATISST STATISST STATISST STATISST STATISST STATISST STATI

A controlled copy of this report will be distributed to the Client and any parties that are authorised by the Client. The report is intended for the sole use of the Client and K2 does not accept any responsibility for other parties who may rely on this report. The report shall be read in full in conjunction with the appendices and other relevant documents. No section of this report may be removed or reproduced without K2's permission. K2 does not take ownership of any incorrect inference from this report and any clarification regarding the works undertaken can be undertaken with K2.

All rights reserved. © K2 Consulting Group 2022.

K2 Environmental Services Pty Ltd (Trading as K2 Consulting Group) ABN: 34630243908 Suite 222, Level 2 20B Lexington Drive, Bella Vista NSW 2153 info@K2consultinggroup.com.au

Contents

1. INT	RODUCTION	5 -
2. OB	JECTIVES	5 -
3. SC	OPE OF WORKS	5 -
4. SIT	E DESCRIPTION	6 -
4.1.	Surrounding Land Use and proximity to environmentally sensitive area	7 -
4.2.	Site Description	7 -
5. SIT	E SETTINGS	8 -
5.1.	Hydrology and Site Topography	8 -
5.2.	Lithology and Geology	8 -
5.3.	Acid Sulphate Soils	9 -
6. CO	NCEPTUAL SITE MODEL	9 -
6.1.	Potential Sources and Associated Contaminants of Concern	10 -
6.2.	Potential Contaminants of Concern	10 -
7. Fie	ld Investigation Methodology	12 -
7.1.	Soil Investigation	12 -
7.2.	Sampling Procedures	12 -
7.3.	Sample Transportation	12 -
7.4.	Collection of Blind samples	12 -
7.5.	Decontamination Procedures	12 -
7.6.	Laboratory Analysis	13 -
8. SIT	E ASSESSMENT CRITERIA	14 -
8.1.	Soil Assessment Criteria	
8.1	.1. Health Investigation Levels (HILs)	14 -
8.1	.2. Health Screening Levels (HSLs)	14 -
8.1	.3. Management Limits	14 -
8.1	.4. Ecological Investigation Levels (EILs)	15 -
8.1	.5. Asbestos in soils	15 -
8.1	.6. Acceptable statistical analysis	15 -
9. RE	SULTS AND DISCUSSION	17 -
9.1.	Field Observations	17 -
9.2.	Discussion of Analytical Results – Soil	17 -
10. QU	ALITY ASSURANCE AND QUALITY CONTROL	
10.	1.1. Duplicate samples	19 -

11.	CONCLUSIONS	- 21 -
12.	RECOMMENDATIONS	- 21 -
13.	UNEXPECTED FINDS PROCEDURE	- 22 -
14.	LIMITATIONS	- 23 -
15.	REFERENCES	- 24 -

List of Tables

Table 1. Site Identification Details	7 -
Table 2. Conceptual Site Model	11 -
Table 3. Adopted Site Assessment Criteria	16 -
Table 4. Soil lithology	17 -
Table 5. Summary of nutrient results	18 -
Table 6. Summary of Total Coliforms in the soil samples	18 -
Table 7. RPD comparison between primary sample and Blind Duplicate sample	20 -

List of Figures

Figure 1. Site locality map accessed via google maps	6 -
Figure 2. Location for Area of Environmental Concern (AEC)	6 -
Figure 3. Geological map of the approximate site location	8 -
Figure 4. Acid Sulphate Soil ASRIS review. Database accessed on 13th May 2022.	9 -
Figure 5. Aerial representation of approximate test pit locations and site features (adapted fro	om a
drawing supplied)	- 25 -

List of Appendices

- Appendix I Aerial Photographs
- Appendix II Photographs
- Appendix III Test Pit Logs
- Appendix IV Laboratory Results Summary
- Appendix V Laboratory Reports

1. INTRODUCTION

K2 Consulting Group (K2) was engaged by Selwyn Snow Resort Pty Ltd (Client) to undertake an Environmental Site Assessment of an area (effluent absorption trench area) within the property located at 213A Kings Cross Road, Cabramurra NSW 2629 (hereafter referred to as 'the Site'). The site can be identified as Lot 36 of DP 46316 and is in the Snowy Monaro Regional Council Local Government Area (LGA).

The effluent absorption area covers approximately 410 m² and is defined as the area of environmental concern (AEC) for this investigation. The AEC was previously used to discharge treated effluent from a sewage treatment system using sub-surface absorption trenches. The design and the principles of the treatment system were not known at the time of the investigation.

This report has been prepared in general accordance with the provisions for an Environmental Site Assessment as defined within the NSW EPA (2020) Guidelines for Consultants Reporting on Contaminated Sites and National Environmental Protection (Assessment of Site Contamination) Measure 1999 (NEPM, 2013), NSW EPA, Contaminated Sites, Sampling Design Guidelines (NSW EPA, 1995) and other relevant guidelines.

2. OBJECTIVES

The objectives of the environmental assessment were to identify potential sources of contamination and evaluate the associated contaminants of potential concern (CoPC), identify areas of potential contamination, identify potential human and ecological receptors, and identify potentially contaminated soil. It is understood that the report is required to establish any potential soil contamination risks before the construction of a new Sewage Treatment Plant (STP) that is proposed to be built at the AEC. The construction of the STP will require the excavation of soils from the AEC and hence this investigation will allow for evaluating the contamination status and waste classification of the excavated material.

3. SCOPE OF WORKS

The scope of works undertaken to prepare this Environmental Site Assessment (ESA) report included the following:

- Preparation of a soil sampling program;
- Site walkover inspection noting any potential for contamination and the identification of potential sources and/or receptors;
- Collection of soil samples from ten (10) test pits to a maximum depth of 0.7m BGL, or prior refusal undertaken within the AEC using a systematic sampling pattern;
- Analysis of ten (10) selected soil samples for a range of CoPC including Heavy metals/metalloids (Arsenic, Cadmium, Chromium, Copper, Lead, Nickel, Mercury, and Zinc, Total Recoverable Hydrocarbons (TRH), Polycyclic Aromatic Hydrocarbons (PAH), Benzene, Toluene, Ethylbenzene, Xylenes and Naphthalene (BTEXN), Organo Chlorine, and Organo Phosphate Pesticides (OCP/OPP), Asbestos, Nutrients (Total Nitrogen (N), Total Kjeldahl Nitrogen (TKN), Nitrogen Oxide (NOX), Nitrite (NO₂), Nitrate (NO₃), Ammonia (NH₃) and Total Phosphorus (P), and microbial contamination (faecal coliforms); and
- Preparation of an Environmental Site Assessment report in accordance with the NSW EPA (2020) Guidelines for Consultants Reporting on Contaminated Sites and National Environment

Protection (Assessment of Site Contamination) Measure 1999 (NEPM, 2013) and other relevant guidelines.

4. SITE DESCRIPTION

The subject area is located within the Selwyn Snow Resort at 213A Kings Cross Road, Cabramurra NSW 2629, identified as Lot 36 on DP 46316 within the Snowy Monaro Regional Council and Kosciuszko National Park. The AEC (approximately 410 m²) has been historically used for discharging treated sewage effluent and is located to the north of Selwyn Resort Pty Ltd. The site locality and the Subject Area of Environmental Concern (AEC) are presented in **Figure 1** and **Figure 2** respectively.

Figure 1. Site locality map accessed via google maps.

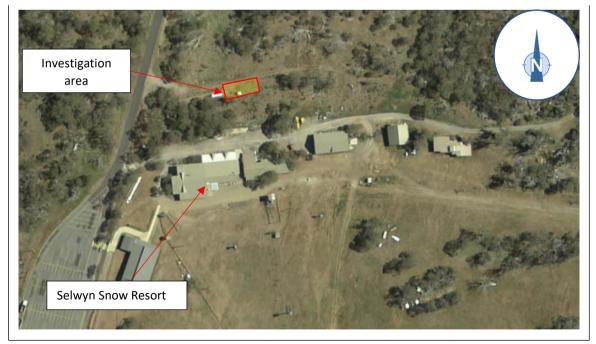


Figure 2. Location for Area of Environmental Concern (AEC)

K2 Consulting Group

The resort and its facilities were damaged during the bushfire in 2019 and are currently being renovated. The renovation will include decommissioning of the old STP system and associated absorption trenches. The area for the proposed construction of the new STP is presented in **Figure 5**.

A summary of the site information is provided in **Table 1** below.

Table 1. Site Identification Details

Item	Description		
Current Site Owner	Selwyn Snow Resort Pty Ltd		
Site Address	213A Kings Cross Road, Cabramurra NSW 2629		
Legal Description	Lot 36 on DP 46316		
Local Government Authority	Snowy Monaro Regional Council		
Subject area of investigation	410 m ²		
Elevation (m AHD)	1556		
Geographical Location (GDA94-MGA56)	Lat -35.905541267, Lon 148.450022722		

4.1. Surrounding Land Use and proximity to environmentally sensitive area

The Site is located within the Nature Conservation zoning of Snowy Monaro Regional Council. Adaminaby is the closest residential town located approximately 29 km southeast of the site.

4.2. Site Description

The soil investigation works were undertaken by an experienced environmental consultant from K2 Consulting Group on 10th May 2022. The following site features were observed during the site investigation and are summarised below:

- Construction activities relevant to the resort renovations works were observed to the south of the AEC;
- A above-ground gas tank unit was located approximately 10 m west of the subject area. The nature of the gas stored in this tank is not known;
- A car park constructed with asphalt was observed 100 m south-west of the AEC; and
- Most areas are covered with vegetation. No visual or olfactory signs of contamination, including staining or stressed vegetation, were observed in the soils within the AEC.

Relevant site features are presented in Figure 5 of this report (Refer to Appendix I).

К2

5. SITE SETTINGS

5.1. Hydrology and Site Topography

The subject area is elevated in the southern section and inclines towards the north (Source: Espade website accessed on 12th May 2022). Any surface runoff is expected to flow from the southern section of the site to the north. The closest water body to the site is the Three Mile Creek approximately 1.5 km north of the site. Snow and ice are expected in the area during the winter months of July and August and it's expected to melt during October.

5.2. Lithology and Geology

The site is predominantly underlain by Gooandra volcanic member of the Kiandra Group. The Gooandra volcanic member is underlain by Metabasalt, basalt breccia (emplaced as pillow lavas), amphibolite, chloritic schists, feldspathic sandstone; aphyric and feldspar-phyric basalt, basaltic lava breccia, rhyolite, shale; fine-grained feldspathic siltstone and shale. (Refer to **Figure 3**). The geological information was collected from www.minview.geoscience.nsw.gov.au database accessed on the 13th of May 2022.

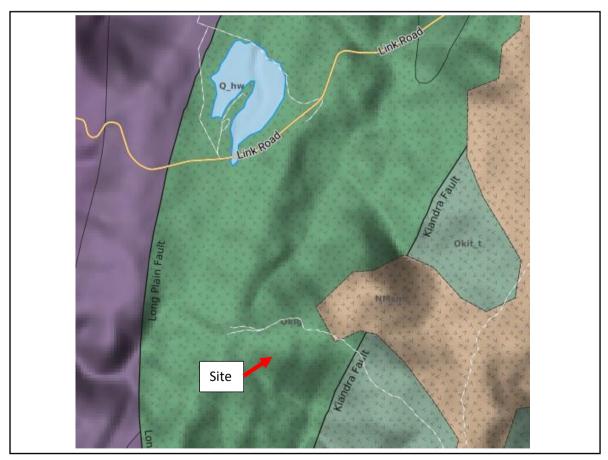


Figure 3. Geological map of the approximate site location.

5.3. Acid Sulphate Soils

A review of the Australian Soil Resource Information Systems (ASRIS) Acid Sulphate Soil map indicated that the site is classified within C4 – extremely low probability and very low confidence. (Refer to **Figure 4**).

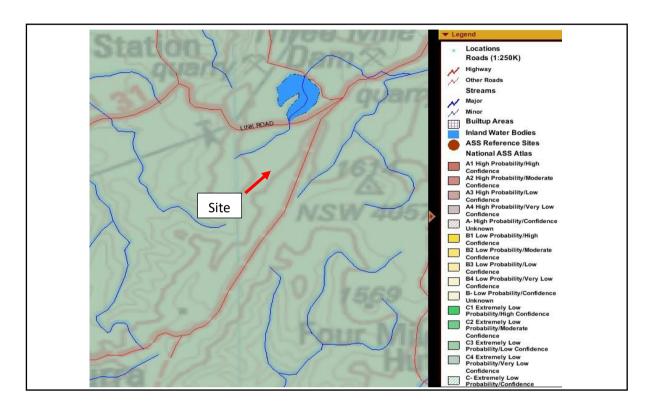


Figure 4. Acid Sulphate Soil ASRIS review. Database accessed on 13th May 2022.

6. CONCEPTUAL SITE MODEL

A conceptual site model (CSM) is a tool that relates identified impacts of potentially contaminated source areas based on interpretation of the geology/hydrogeology and contaminant migration pathways to the receptors (environment and/or human). A CSM provides a discussion of the nature and extent of impacts, and relevant source-pathway-receptor (SPR) linkages.

The linkage between SPR in the CSM examines scenarios of whether the exposure pathway exists as complete, potential, or incomplete exposure. The status of the exposure pathway determines the presence of risk to the environment and/or human health. SPR linkage categories are summarised as follows:

- Complete: All elements are present. Potential risk exists;
- Potentially complete: one or more of the elements may not be present, and /or information is insufficient to eliminate or exclude the element. The potential for risk exists; and
- Incomplete: one or more of the elements are absent. The risk to the receptor does not exist.

In accordance with ASC NEPM (2013) Schedule B2 – Guideline on Site Characterisation and to aid in the assessment of data collection for the site, K2 developed a preliminary CSM, to evaluate potential

risk from the SPR scenarios. The CSM provides a framework for the review of the reliability and useability of the data collected and to identify data gaps in the existing site characterisation.

Based on the historical information review and field visit, a CSM was developed which is summarised in **Table 2.**

6.1. Potential Sources and Associated Contaminants of Concern

Based on the site visit and historical information review, the following contamination sources are likely to be present:

- Potential imported fill material on-site;
- Application of historical pesticides for land management activities on the site and surrounding areas of the site; and
- Effluent from the absorption trenches;

6.2. Potential Contaminants of Concern

Based on the review of the historical use of the site, the COPC at the site are:

- Heavy metals/metalloids (Arsenic, Cadmium, Chromium, Copper, Lead, Nickel, Mercury, and Zinc, Total Recoverable Hydrocarbons (TRH), Polycyclic Aromatic Hydrocarbons (PAH), Benzene, Toluene, Ethylbenzene, Xylenes and Naphthalene (BTEXN), PFAS, Organo Chlorine and Organo Phosphate pesticides (OCP/OPP), and Asbestos.
- Nutrients Total Nitrogen (N), Total Kjeldahl Nitrogen (TKN), Nitrogen Oxide (NOX), Nitrite (NO₂), Nitrate (NO₃), Ammonia (NH₃), and Total Phosphorus (P); and
- Microbial contaminants (Faecal *Coliforms*)

The CSM presented in **Table 2** is based on site-specific data to reflect the conditions known to exist on-site and exposure to the occupants of the proposed land use. The potential contamination sources, exposure pathways, and human and environmental receptors that were considered relevant for this assessment are summarized along with a qualitative assessment of the potential risks posed when the exposure pathways are complete as presented in **Table 2** below. К2

Table 2. Conceptual Site Model								
Source	Contaminants of Potential Concern (CoPC)	Affected Areas	Primary Release Mechanism	Secondary Release Mechanism	Potential Impacted Media	Exposure Pathways	Potential receptors	The Potential risk of Complete exposure pathway
Imported fill material within the trenches	TRH, BTEX, PAH, Metals, OCP, OPP, Asbestos	Across the AEC	Placement of fill materials on site	Leaching and migration of contaminants via surface runoff, rainwater infiltration during historical land use, or disturbance during future development	Soil, groundwater, and surface water run-off	Dermal contact, inhalation of dust/vapour, ingestion, surface water, and groundwater migration.	Construction personnel involved in the development of the site, Future staff and visitors	Complete
							Groundwater	Incomplete
Historical usage of pesticides in the surrounding areas	OCP, OPP, heavy metals	Across the site, with particular emphasis on soils in the grassed areas	Use of pesticides for landscaping/land management activities	Leaching and migration of contaminants via surface runoff, rainwater infiltration during historical land use, or disturbance during future	Soil, groundwater, and surface water	Dermal contact, inhalation of dust/vapour, ingestion, surface water, and	Construction personnel involved in the development of the site, Future staff and visitors	Complete
				development		groundwater migration.	Groundwater	Complete
Surface runoff from the effluent treatment plant	Nutrients (Total N, TKN, NOX, NO2, NO3, NH3, Total P)	Across the AEC	Effluent treatment plant/Septic system operation in the subject area	Leaching and migration of contaminants via surface runoff, rainwater infiltration during historical land use, or disturbance during future development	Soil, groundwater, and surface water	Dermal contact, inhalation of dust/vapour, ingestion, surface water, and groundwater migration.	Construction personnel involved in the development of the site, Future staff and visitors	Complete
						8	Groundwater	Complete
Surface runoff from the effluent treatment plant	Faecal coliforms	Across the AEC	Effluent treatment plant/Septic System operation in the subject area	Leaching and migration of contaminants via surface runoff, rainwater infiltration during historical land use, or disturbance during future development	Soil, groundwater, and surface water	oundwater, nd surface surface water, and	Construction personnel involved in the development of the site, Future staff and visitors	Complete
							Groundwater	Complete

Selwyn Snow Resort Pty Ltd., Cabramurra NSW 2629

7. Field Investigation Methodology

7.1. Soil Investigation

A total of ten (10) test pits were excavated using an 8-ton excavator to a maximum depth of 0.7 m below ground level (BGL). Sampling locations were undertaken based on a systematic sampling pattern. Ten (10) primary soil samples and one (1) blind duplicate sample were collected and analysed for the CoPC.

Soil samples were collected from the top 0.0-0.4 m BGL in the AEC based on the field observations and if any apparent contamination was noted. Shale was encountered approximately between 0.2-0.7 m BGL as the AEC was inclined towards north. Photo-Ionisation Detector (PID) readings were not taken and during excavation, no indications of volatile hydrocarbons, odour, and staining were observed.

Field observations and visual soil indicators such as staining, odour, and discolouration, were considered during the collection of samples and are recorded in the test pit logs **(Appendix III)**.

7.2. Sampling Procedures

Soil samples were collected by wearing disposable nitrile gloves, which were changed between each sample. Soil samples marked for chemical analysis were carefully placed in glass jars supplied by the laboratory. The jars were filled with soil samples to minimise any headspace.

Approximately 30-50 g of soils were placed in zip lock bags for asbestos analysis (presence/absence method).

All field observations were noted in the field sheet including, unique sample identification, sample description, sampling coordinates, soil profiles, and borehole numbers.

7.3. Sample Transportation

The jars were placed in a precooled icebox (approximately 4° C) with ice for sample preservation and transportation. The field forms were completed, and the samples were then transferred to the laboratories under Chain of Custody (COC) forms.

All samples will be stored in the laboratories for a specified period following the receipt of samples. Should any anomalies be detected in the first round of analysis additional investigation such as additional analysis or leachate testing will be carried out.

7.4. Collection of Blind samples

A representative soil media was split into two portions with minimal disturbance and placed in two jars prepared by the laboratory. One jar was named with the Primary sample ID and the other jar was named with the blind sample ID. The Primary and Blind samples were sent to the primary laboratory – Eurofins | MGT.

7.5. Decontamination Procedures

The materials used for sampling were cleaned with water/detergent spray and rinsed with water and ensured that no cross-contamination could occur from other sampling locations from any apparent debris. This decontamination procedure was followed between the sampling locations within the site.

Any excess soils collected during the investigation were placed within the borehole and reinstated. No soils from the drilling program were taken offsite for disposal.

7.6. Laboratory Analysis

Chemical Analysis

A total of 10 primary soil samples were collected during field investigations and sent to Eurofins | MGT (Eurofins) for the analysis of the CoPC.

In addition, one blind intra-laboratory replicate sample (BR1) was analysed by Eurofins for QC purposes. Eurofins is accredited by the National Association of Testing Authorities, Australia (NATA) for the analysis tested.

Asbestos Analysis

Ten (10) primary samples collected were sent to Australian Safer Environment and Technology (ASET) for the analysis of asbestos in soils. The samples were tested for the presence/absence of asbestos in soils (AS 4964-2004 method).

Microbial Analysis

Ten (10) soil samples collected were sent to Eurofins for the microbial analysis of total Coliforms (Faecal).

8. SITE ASSESSMENT CRITERIA

8.1. Soil Assessment Criteria

The site assessment criteria (SAC) used in this investigation were adopted from the Assessment of Site Contamination, National Environment Protection (Assessment of Site Contamination) Measure (1999), as amended in 2013.

8.1.1. Health Investigation Levels (HILs)

The NEPM guidelines have established the following four generic land-use settings for the assessment of human health risks from a broad range of organic and inorganic contaminants (Tier 1 assessment).

- HIL A Residential with garden/accessible soil (homegrown produce <10% fruit and vegetable intake, (no poultry), also includes children's day-care centres, preschools, and primary schools;
- HIL B Residential with minimal opportunities for soil access includes dwellings with fully and permanently paved yard space such as high-rise buildings and flats;
- HIL C Public open spaces such as parks, playgrounds, playing fields (e.g., ovals), secondary schools, and footpaths. It does not include undeveloped public open space (such as urban bushland and reserves) which should be subject to a site-specific assessment where appropriate; and
- HIL D Commercial/industrial such as shops, offices, factories, and industrial sites.

Based on the current land use and the proposed land use (development of a snow resort), **HILC (Public open spaces)** was considered as the appropriate criteria (Tier 1 screening criteria) relevant to this investigation. Currently, there are no Health Investigation Levels for Nutrients and Microbial concentrations from effluent operation in soils. The concentration of nutrients shall be reduced to background levels. Faecal microbial colonies cannot be identified in the natural environment.

8.1.2. Health Screening Levels (HSLs)

The HSLs were established for specific petroleum hydrocarbon fractions to assess the human health risk from vapour inhalation and direct contact pathways. The HSLs can vary depending on the physiochemical properties of the soil, soil depth, and the presence of any building structures on site. The HSLs adopted for this investigation were Clay (Clay, clay loam, and silt loam) and are summarised in Site Assessment Criteria **Table 3**.

8.1.3. Management Limits

Management limits apply to petroleum hydrocarbon fractions (F1, F2, F3, and F4) and indicate the maximum acceptable values on a site, and apply to all soil depths if any petroleum hydrocarbon contamination is identified on a site. Management limits should be considered to identify the presence of phase-separated hydrocarbons, gross contamination, any potential fire or explosive risks, and damage to buried infrastructure and aesthetics of the site.

Based on the current and future development, the Management Limits adopted during this investigation are 'Public open spaces'.

8.1.4. Ecological Investigation Levels (EILs)

No Ecological Investigation Levels (EILs) and Ecological Screening Levels (ESLs) are applicable for the purpose of this investigation.

8.1.5. Asbestos in soils

Asbestos in soils was analysed by the Australian Standard AS 4964-2004 (Method for the qualitative identification of asbestos in bulk samples) by a NATA accredited laboratory. The presence of asbestos was used as an indication to assess the soils for any risks from asbestos. If any samples were identified to be positive or if any Asbestos Containing Material (ACM) is observed on soils, a detailed asbestos investigation may be recommended.

8.1.6. Acceptable statistical analysis

The contaminated soils concentration that meets the following criteria will be considered acceptable:

- The maximum concentration of analytes in all samples meet the adopted acceptance criteria; or
- The 95% upper confidence limit (UCL) concentration of each contaminant is below the adopted acceptance criteria; and
- No individual exceedance is greater than 2.5 times the acceptance criteria.

A location will be a 'hot spot' and requires further management, including additional assessment and remediation if:

- The concentration of a contaminant is greater than 2.5 times the acceptable adopted criteria; and
- The 95% UCL average concentration is above the adopted acceptance criteria

Analytes	Health Investigation		eening Levels en spaces (C) ²	Management Limits (C) Fine soils	
-	Levels (C) ¹	HSL Direct Contact (mg/kg) ³ (mg/kg)		(mg/kg)	
Arsenic (total)	300	-	-	-	
Cadmium	100	-	-	-	
Chromium (Total)	240	-	-	-	
Copper	20000	-	-	-	
Lead	600	-	-	-	
Mercury (inorganic)	400	-	-	-	
Nickel	800	-	-	-	
Zinc	30000	-	-	-	
Polycyclic aromatic hydrocarbons (PAHs)	400	-	-	-	
Carcinogenic PAHs (As BaP TEQ)	4	-	-	-	
Phenols	45000	-	-	-	
DDT+DDE+DDD	400	-	-	-	
Aldrin and Dieldrin	9	-	-	-	
Chlordane	80	-	-	-	
Endosulfan	400	-	-	-	
Endrin	20	-	-	-	
Heptachlor	9	-	-	-	
Hexachlorobenzene	15	-	-	-	
Methoxychlor	500	-	-	-	
Chlorpyrifos	300	-	-	-	
Benzene	-	NL	120	-	
Toluene	-	NL	18000	-	
Ethyl Benzene	-	NL	5300	-	
Xylene	-	NL	15000	-	
Naphthalene	-	NL	1900	-	
TRH: C6 – C10 (F1)	-	NL	5100	800	
TRH: C10-C16 (F2)	-	NL	3800	1000	
TRH: C16- C34 (F3)	-	-	5300	3500	
TRH: C34 – C40 (F4)	-	-	7400	10000	

Table 3. Adopted Site Assessment Criteria

Notes:

1. HIL C - Public open spaces such as parks, playgrounds, playing fields (e.g., ovals), secondary schools, and footpaths.

2. Health Screening Levels (HSL) for surface soils 0 m to <1 m where applicable. NL - Not Limiting.

3. Silt (silt, silty clay, and silty clay loam) criteria were adopted.

9. RESULTS AND DISCUSSION

9.1. Field Observations

The AEC is located on a slope, elevated on the south and inclining towards the north. During soil sampling using test pits, absorption trenches were observed at an approximate depth of 0.3 m BGL. The bottom of the absorption trenches was not observed as the test pits were terminated upon encountering trenches and hence the thickness of the gravel materials in the trenches was not known. The trenches were observed in the test pit locations TP3, TP7, and TP 10.

General soil lithology is provided in **Table 4** below.

Table 4. Soil lithology

Soil profile	Depth (m BGL)	Soil type
Topsoil/Reworked	0.0m - 0.4m BGL	Topsoil. Gravelly clayey silt. Natural or reworked
natural	0.0m - 0.7 m BGL at TP4	natural type. Light to dark brown. Dry and
naturai	0.0m – 0.6m BGL at TP5	organic material.
	0.0m-0.4m BGL	
Natural Rock	0.7 m BGL at TP4	Generally, shale or sandstone was observed
	0.6m BGL atTP5	

9.2. Discussion of Analytical Results – Soil

A summary of laboratory results is provided in the laboratory certificates presented in **Appendix IV**.

Heavy Metals

The concentration of heavy metals was reported below the Health Investigation Levels (HIL-C) for all CoPC analysed.

TRH/BTEX

The concentrations of TRH/BTEX were below the laboratory Limit of reporting (LOR) and hence were below the adopted SAC (HSL-C).

<u> PAH</u>

The concentrations of PAH were below LOR, below the adopted SAC (HSL-C).

OCP/OPPs

The concentrations of OCP/OPPs were below LOR, and below adopted SAC (HIL-C).

<u>Asbestos</u>

No ACM fragments were observed on-site during the site walkover or the soil sampling program. No asbestos was detected in any of the soil samples presented to the laboratories for analysis. Based on field observation and laboratory analysis, it can be concluded that no asbestos was detected in the investigated area. If any fragments or any asbestos in other forms are detected in the soils onsite, an unexpected finds procedure shall be implemented immediately.

Nutrients

There are currently no assessment criteria for the Nutrients - Total Nitrogen (N), Total Kjeldahl Nitrogen (TKN), Nitrogen Oxide (NOX), Nitrite (NO₂), Nitrate (NO₃), Ammonia (NH₃), and Total Phosphorus (P) in soil. The concentration of Total Nitrogen (as N) and Phosphorous is an indicator of the previous land usage in the AEC as a treated effluent absorption trench system. A summary of total nitrogen and phosphorous are presented in **Table 5** below.

Table 5. Summary of nutrient results

Sample ID	Sample Date	Total Nitrogen (mg/kg)	Total Phosphorous
ST-01-1482-TP1		530	460
ST-01-1482-TP2		1800	360
ST-01-1482-TP3		1200	300
ST-01-1482-TP4		40	440
ST-01-1482-TP5	10.05.2022	350	280
ST-01-1482-TP6	10.05.2022	1100	380
ST-01-1482-TP7		730	390
ST-01-1482-TP8		920	350
ST-01-1482-TP9		1900	350
ST-01-1482-TP10		900	270

Microbial

There are currently no assessment criteria for total Coliforms in soil. The microbial concentration in the soil samples is an indicator of the previous land usage in the subject area as a treated effluent absorption trench system. **Table 6** presents a summary of microbial concentration results in the soil samples analysed.

Sample ID	Sample Date	Limit of Quantification (LOQ)	Total Coliforms (MPN/g)
ST-01-1482-TP1-MCR1	10.05.2022	1	1100
ST-01-1482-TP2-MCR2		1	63
ST-01-1482-TP3-MCR3		1	120
ST-01-1482-TP4-MCR4		1	>24000
ST-01-1482-TP5-MCR5		1	>24000
ST-01-1482-TP6-MCR6		1	790
ST-01-1482-TP7-MCR7		1	420
ST-01-1482-TP8-MCR8		1	230
ST-01-1482-TP9-MCR9		1	1200
ST-01-1482-TP10-MCR10		1	4400

Table 6. Summary of Total Coliforms in the soil samples

10. QUALITY ASSURANCE AND QUALITY CONTROL

10.1.1. Duplicate samples

Blind duplicate samples were used to identify any variation in analyte concentration from samples collected from the same sampling point and ensure the repeatability of the laboratory's analysis method. A split duplicate sample was collected to determine the analytical proficiency of the laboratories.

The acceptance criteria for quality control samples as stipulated in AS4482.1-2005 indicates that a 30-50% range of the mean concentration of the analyte (RPD) is acceptable with the below criteria adopted for this purpose:

- RPD 30% for organics and RPD 50% for inorganics if concentration greater than or equal to 10x the laboratory Detection Limit (LOR);
- No limit if the primary and duplicate concentration is less than 10 x the LOR; and
- If both sample values are less than the LOR, the RPD is not calculated

A summary of the RPD between the primary and duplicate samples from one test pit (TP1) is provided in **Table 7** below. No asbestos was detected in the primary blind duplicate samples.

The surrogate spikes undertaken by the laboratory for the contaminants of potential concern meet the control limits of 50-150%. A review of the holding times of the analytes indicated that all samples were provided to the laboratory under suitable cold chain conditions and within the holding times prescribed. The RPDs and the lab comments indicate that sample collection and handling have been undertaken in accordance with the acceptable limits and no anomalies were detected. Standard analytical methods used during this investigation were accredited by NATA. Eurofins Laboratory was used as a primary laboratory for chemical analysis and microbial analysis. ASET was used as the primary laboratory for asbestos analysis in the soil samples. All chain of custody and field documentation was reviewed and or in accordance with the data quality assessment indicators. The samples were collected by an experienced field consultant and soil profiles and other observations were noted during the investigation.

The analysis of the QA/QC program indicates that the data obtained from this investigation undertaken by K2 Consulting Group can be considered reliable and representative of the soil conditions on-site during the time of sampling.

		Blind Duplicate Samples					
Analyte	LOR	ST-01-1482- TP1	ST-01-1482-TP1- BR1	RPD%	DQI met		
Arsenic	2	2.1	<2	NA	Yes		
Cadmium	0.4	<0.4	< 0.4	NA	Yes		
Chromium (total)	5	17	14	6	Yes		
Copper	5	20	19	4	Yes		
Lead	5	14	10	7	Yes		
Mercury	0.1	<0.1	<0.1	NA	Yes		
Nickel	5	15	15	10	Yes		
Zinc	5	44	40	20	Yes		
Benzene	0.1	<0.1	<0.1	NA	Yes		
Toluene	0.1	<0.1	<0.1	NA	Yes		
Ethylbenzene	0.1	<0.1	<0.1	NA	Yes		
Xylene	0.3	<0.1	<0.3	NA	Yes		
Benzo(a)pyrene	0.5	<0.5	<0.5	NA	Yes		
Total PAH	0.5	<0.5	<0.5	NA	Yes		
TRH C6-C10	20	<20	<20	NA	Yes		
TRH C10-C16	50	<50	<50	NA	Yes		
TRH C16-C34	100	<100	<100	NA	Yes		
TRH C34-C40	100	<100	<100	NA	Yes		

Table 7. RPD comparison between primary sample and Blind Duplicate sample

NA- Analyte concentrations below LOR and hence no RPD was calculated

11. CONCLUSIONS

Based on the site investigation described in this report, the following conclusions are made:

- Clayey silt with gravel was observed in the topsoil/reworked natural profile. The AEC is located on a slope inclining towards the north, the topsoil profile was observed between 0.0 m-0.3 m BGL in the northern sections and 0.0 m-0.7 m BGL along the southern sections;
- Absorption trenches were observed during test pit excavation at test pits TP3, TP7, and TP10. Rocks were encountered between 0.35m BGL (along the northern side) to 0.7m BGL (southern side) due to the sloping nature of the AEC from south to north;
- The concentration of analytes in the ten (10) primary soil samples collected and analysed was below the adopted site assessment criteria HIL-C (Public open spaces) for metals (Arsenic, Cadmium, Chromium, Copper, Lead, Nickel, Mercury, and Zinc), Total Recoverable Hydrocarbons (TRH), Polycyclic Aromatic Hydrocarbons (PAH), Benzene, Toluene, Ethylbenzene, Xylenes and Naphthalene (BTEXN), Organo Chlorine, and Organo Phosphate Pesticides (OCP/OPP and Asbestos;
- The concentration of Total Coliforms in soil samples analysed indicates the presence of microbes (faecal coliforms) in the soils located in the vicinity of the effluent trenches. Soil samples collected at TP4 and TP5 (sample IDs: ST-01-1482-TP4-MCR4 and ST-01-1482-TP4-MCR5) recorded concentrations > 24,000 MPN/g;
- The concentration of nutrients Nitrite (NO₂), Nitrate (NO₃), and Ammonia (NH₃) were below the laboratory's LOR. However, Total Kjeldahl Nitrogen (TKN), and Phosphorus (P) exceeded the LOR in all the samples analysed;
- No asbestos was detected in any of the soil samples analysed by the laboratory;
- It is noted that the RPDs of the primary sample (ST-01-1482-TP1) and duplicate sample (ST-01-1482-TP1-BR1) collected were below the allowed criteria; and
- Quality Control assessments undertaken on the samples indicate that the samples and the field procedures met the relevant criteria adopted.

12. RECOMMENDATIONS

Based on the information provided in the above report K2 recommends the following:

Microbial contamination

- It is recommended that the soils excavated from the trench area are stockpiled separately in a controlled area and mixed well with chlorine (salt or solution). Care must be exercised to prevent leaching of any water from soils into the natural environment and divert surface runoff from extacavted soil material;
- Periodical turning and mixing of the soils with chlorine would enhance the degradation of faecal coliforms combined with Ultraviolet (UV) rays from the sunlight; and
- Upon completion of the chlorine treatment, the soils can then be applied to a suitable area within the site. As a conservative measure, the soils should not be applied to an area where there is a potential for direct human contact, agricultural activities in the near vicinity, or any potential surface runoff leading to a local waterbody.

It is recommended that the soils are tested for total coliforms before application to a land area within the site.

K2 Consulting Group

Total Nitrogen and Total Phosphorous contamination

- The concentration of total nitrogen and total phosphorous in soils can be reduced using the following method:
 - Plant uptakes by growing vegetation on the excavated soils Following the treatment of soil for faecal coliforms and validation to meet acceptable criteria, growing plants on the soils could help reduce the elevated soil nutrient as it would be taken up by plant roots. The plants or fruits or vegetation used in this activity will be non-edible.

The concentration of the total nitrogen shall be brought to local background levels. Due to the higher altitude and the slopy nature of the ground at AEC and its surroundings, it is recommended that the pros and cons of each treatment method pertaining to the nature of the site is well understood before commencement.

13. UNEXPECTED FINDS PROCEDURE

Unexpected finds procedure provides a framework to manage any contamination encountered onsite during the site works. The degree of the unexpected finds procedure can vary based on the contamination nature and the risks involved. In general, if any contamination is encountered, the works shall cease immediately and an Environmental Consultant and/or an Occupational Hygienist shall be engaged to access the situation. For higher-risk situations, involving the risk of explosion and/or damage to underground services, the local authorities and emergency teams shall be contacted to manage the situation.

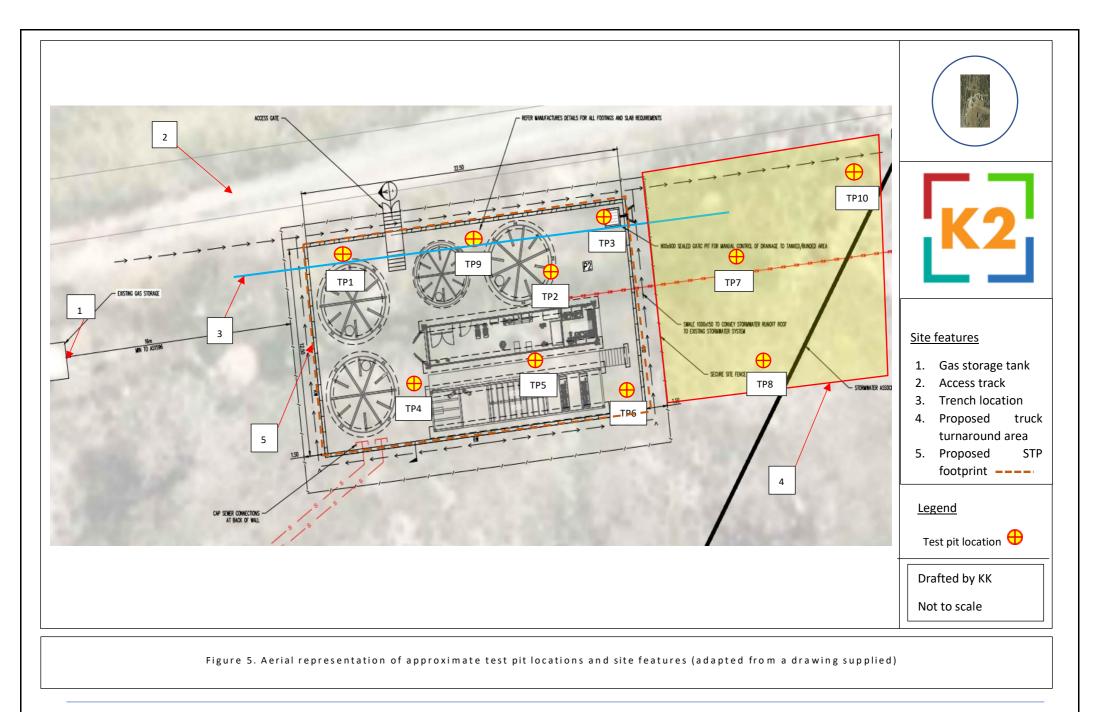
14. LIMITATIONS

This report has been prepared for use by the Client who has commissioned the works in accordance with the project brief only and has been based on information provided by the client. The advice herein relates only to this project and all results, conclusions, and recommendations made should be reviewed by a competent and experienced person with experience in environmental and occupational hygiene investigations, before being used for any other purpose.

K2 Environmental Services Pty Ltd (K2) accepts no liability for use or interpretation by any person or body other than the client who commissioned the works. This report should not be reproduced or amended in any way without prior approval by the client or K2 and should not be relied upon by any other party, who should make their own independent inquiries. This report does not provide a complete assessment of the status of the site, and it is limited to the scope defined herein. Should information become available regarding conditions at the site including previously unknown sources of contamination, K2 reserves the right to review the report in the context of the additional information. When interpreting reports from other parties, K2 assumes that works undertaken were of a high standard. K2 does not take responsibility for the works or quality of reports produced by other parties involved in the project at any time.

The report is reviewed and authorised by Dr. Dawit Bekele (Certified Site Contamination Specialist CEnvP-SC (ID. SC41149). Dr. Dawit has provided an expert review of this report based on the information provided by K2. K2's professional opinions are based upon its professional judgment, experience, training, and results from analytical data (if applicable). In some cases, further testing and analysis may be required, thus producing different results and/or opinions. K2 has limited investigation to the scope agreed upon with its client. It should be noted only the subject area outlined in this report was inspected and adjacent areas may contain asbestos. K2 reserves the right to retract, review and amend this report if an omission, error, or further investigation is required that may affect the conclusions in the report.

Unless otherwise agreed in writing and signed by both parties, K2's total aggregate liability will not exceed the total consulting fees paid by the client in relation to this Proposal. K2 has used a degree of care and skill ordinarily exercised in similar investigations by a reputable member of the Environmental Industry within Australia. No other warranty, expressed or implied, is made or intended.


15. REFERENCES

- National Environment Protection Council (NEPC), (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999, NEPM, Canberra. Schedule B2: Guideline On-site Characterisation.
- NSW EPA (1997). Contaminated Land Management Act 1997.
- NSW Environmental Protection Authority (2014). Waste Classification Guidelines.
- NSW Government (2016). NSW Work Health and Safety Regulations.
- NSW EPA (2020) Contaminated Land Guidelines Consultants Reporting on Contaminated Land.
- Australian Standard 4482.1-2005: Guide to the Investigation and Sampling of Potentially Contaminated Soil Part 1: Non-volatile and semi-volatile compounds, Part 2: Volatile compounds

Appendix I

Aerial Photographs

Environmental Site Assessment

Appendix II

Photographs

Photo.1. Representative photo of the soils onsite (Gravelly Clay Silt)

Photo.2. Representative photo of soil profile in the test pits at the subject area on site.

К2

Photo.3. Representative photo of soils observed at test pit TP1.

Photo.4. Representative photo of materials observed at test pit TP3 where the subsurface trench was observed.

K2

Environmental Site Assessment

Photo.5. Representative photo of soils and natural rock encountered at test pit TP4.

Photo.6. Representative photo of soil and gravel observed at test pit TP9.

К2

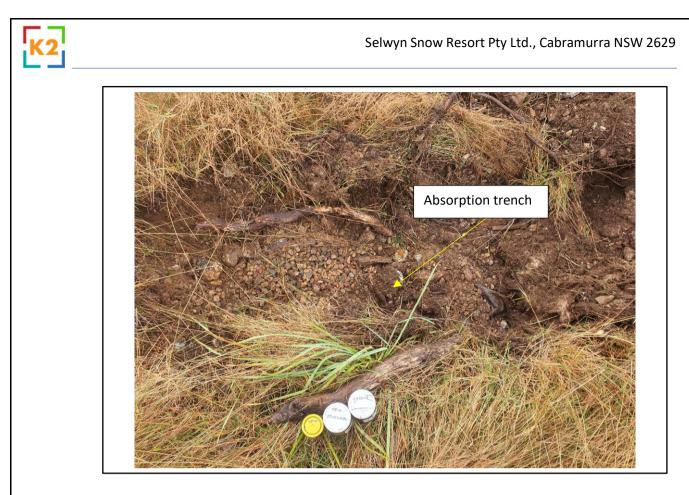


Photo.7. Representative photo of materials observed at test pit TP3 where the subsurface trench was observed. Appendix III

Test Pit Logs

DRILLER

K2 CONSULTING GROUP

PROJECT NUMBER ST-01-1482

CLIENT Selwyn Snow Resort Pty Ltd.

PROJECT NAME Environmental Site Investigation DRILLING COMPANY

ADDRESS 213A Kings Cross Road, Cabramurra DRILLING METHOD Excavator

DRILLING DATE 10/05/2022

COORDINATES 35°54'19"S 148°27'59"E

SURFACE ELEVATION 1556m AHD LOGGED BY Kannan Kaliappan CHECKED BY Kannan Kaliappan

NSW 2629	0			CHECKED BY Kannan Kaliappan				
COMMENTS								
Depth (m)	Samples	Is Analysed?	Graphic Log	Material Description	Additional Observations			
_	ST-01-1482-TP1 ST-01-1482-TP1-BR1 ST-01-1482-TP1-ASB1 [Y		Gravelly clayey silt. Gravelly. Light to Dark brown. Loose. Moist				
0.5 	ST-01-1482-TP1-MCR1		<u>~~</u> ~	Termination Depth at:0.3m - Rock refusal				
- - - 1 -								
- - - 1.5								
- - - - 2								
- - -								
- 2.5 - - -								
- 3 -								
- - - 3.5 -								
- - 4 -								
- - - 4.5 -								
_ _ _ 5 _								
- - - 5.5 -								
- - -								

Disclaimer This log is intended for environmental not geotechnical purposes. produced by ESlog.ESdat.net on 18 May 2022

K2 CONSULTING GROUP

PROJECT NUMBER ST-01-1482 **DIGGING DATE 10/05/2022** COORDINATES 35°54'19"S 148°27'01"E PROJECT NAME Environmental Site Investigation DIGGING COMPANY CLIENT Selwyn Snow Resort Pty Ltd. DIGGER SURFACE ELEVATION 1556m AHD ADDRESS 213A Kings Cross Road, Cabramurra DIGGING METHOD Excavator LOGGED BY Kannan Kaliappan NSW 2629 CHECKED BY Kannan Kaliappan COMMENTS Is Analysed? **Graphic Log** Depth (m) **Material Description** Additional Observations Samples 0. Υ ST-01-1482-TP2 Gravelly clayey silt. Light to Dark brown. ST-01-1482-TP2-ASB2 ST-01-1482-TP2-MCR2 Termination Depth at:0.3m - Rock refusal - 0.5 1 - 1.5 2 - 2.5 3 - 3.5 4 - 4.5 5 - 5.5

Disclaimer This log is intended for environmental not geotechnical purposes. produced by ESlog.ESdat.net on 18 May 2022

K2 CONSULTING GROUP

PROJECT NUMBER ST-01-1482 **DIGGING DATE 10/05/2022** COORDINATES 35°54'19"S 148°27'01"E PROJECT NAME Environmental Site Investigation DIGGING COMPANY CLIENT Selwyn Snow Resort Pty Ltd. DIGGER SURFACE ELEVATION 1556m AHD ADDRESS 213A Kings Cross Road, Cabramurra DIGGING METHOD Excavator LOGGED BY Kannan Kaliappan NSW 2629 CHECKED BY Kannan Kaliappan COMMENTS Is Analysed? Graphic Log Depth (m) **Material Description** Additional Observations Samples ST-01-1482-TP3 Υ Gravelly clayey silt. Dark brown. Moist 9 Trench observed at 0.3m ST-01-1482-TP3-ASB3 $\mathbf{\hat{v}}$ ST-01-1482-TP3-MCR3 BGL Termination Depth at:0.3m - 0.5 1 - 1.5 2 - 2.5 3 - 3.5 4 - 4.5 5 - 5.5

Disclaimer This log is intended for environmental not geotechnical purposes. produced by ESlog.ESdat.net on 18 May 2022

K2 CONSULTING GROUP

PROJECT NUMBER ST-01-1482 **DIGGING DATE 10/05/2022** COORDINATES 35°54'19"S 148°27'00"E PROJECT NAME Environmental Site Investigation DIGGING COMPANY CLIENT Selwyn Snow Resort Pty Ltd. DIGGER SURFACE ELEVATION 1556m AHD ADDRESS 213A Kings Cross Road, Cabramurra DIGGING METHOD Excavator LOGGED BY Kannan Kaliappan NSW 2629 CHECKED BY Kannan Kaliappan COMMENTS Is Analysed? Graphic Log Depth (m) **Material Description** Additional Observations Samples ST-01-1482-TP4 Υ Organic clayey silt. Dark brown. Moist . ST-01-1482-TP4-ASB4 ST-01-1482-TP4-MCR4 Silty gravelly shale. Dry. Grey - 0.5 Termination Depth at:0.7m - Rock refusal 1 - 1.5 2 - 2.5 3 - 3.5 4 - 4.5 5 - 5.5

Disclaimer This log is intended for environmental not geotechnical purposes. produced by ESlog.ESdat.net on 18 May 2022

K2 CONSULTING GROUP

PROJECT NUMBER ST-01-1482 **DIGGING DATE 10/05/2022** COORDINATES 35°54'19"S 148°27'00"E PROJECT NAME Environmental Site Investigation DIGGING COMPANY CLIENT Selwyn Snow Resort Pty Ltd. DIGGER SURFACE ELEVATION 1556m AHD ADDRESS 213A Kings Cross Road, Cabramurra DIGGING METHOD Excavator LOGGED BY Kannan Kaliappan NSW 2629 CHECKED BY Kannan Kaliappan COMMENTS Is Analysed? Graphic Log Depth (m) **Material Description** Additional Observations Samples ST-01-1482-TP5 Υ Organic clayey silt. Dark brown. Moist . ST-01-1482-TP5-ASB5 ST-01-1482-TP5-MCR5 Silty gravelly shale. Dry. Grey. Shale observed from 0.6m 0.5 onwards Termination Depth at:0.6m - Rock refusal 1 - 1.5 2 - 2.5 3 - 3.5 4 - 4.5 5 - 5.5

K2 CONSULTING GROUP

PROJECT NUMBER ST-01-1482 **DIGGING DATE 10/05/2022** COORDINATES 35°54'19"S 148°27'59"E PROJECT NAME Environmental Site Investigation DIGGING COMPANY CLIENT Selwyn Snow Resort Pty Ltd. DIGGER SURFACE ELEVATION 1556m AHD ADDRESS 213A Kings Cross Road, Cabramurra DIGGING METHOD Excavator LOGGED BY Kannan Kaliappan NSW 2629 CHECKED BY Kannan Kaliappan COMMENTS Is Analysed? Graphic Log Depth (m) Samples **Material Description** Additional Observations ST-01-1482-TP6 Υ Topsoil. Brown. Moist. ST-01-1482-TP6-ASB6 ST-01-1482-TP6-MCR6 Termination Depth at:0.4m - Rock refusal - 0.5 1 - 1.5 2 - 2.5 3 - 3.5 4 - 4.5 5 - 5.5

K2 CONSULTING GROUP

PROJECT NUMBER ST-01-1482 **DIGGING DATE 10/05/2022** COORDINATES 35°54'19"S 148°27'00"E PROJECT NAME Environmental Site Investigation DIGGING COMPANY CLIENT Selwyn Snow Resort Pty Ltd. DIGGER SURFACE ELEVATION 1556m AHD ADDRESS 213A Kings Cross Road, Cabramurra DIGGING METHOD Excavator LOGGED BY Kannan Kaliappan NSW 2629 CHECKED BY Kannan Kaliappan COMMENTS Is Analysed? Graphic Log Depth (m) **Material Description** Additional Observations Samples ST-01-1482-TP7 Υ Clayey Silt. Dark brown. Moist Trench observed at 0.3m ST-01-1482-TP7-ASB7 ST-01-1482-TP7-MCR7 BGL Termination Depth at:0.3m - 0.5 1 - 1.5 2 - 2.5 3 - 3.5 4 - 4.5 5 - 5.5

K2 CONSULTING GROUP

PROJECT NUMBER ST-01-1482 **DIGGING DATE 10/05/2022** COORDINATES 35°54'19"S 148°27'01"E PROJECT NAME Environmental Site Investigation DIGGING COMPANY CLIENT Selwyn Snow Resort Pty Ltd. DIGGER SURFACE ELEVATION 1556m AHD ADDRESS 213A Kings Cross Road, Cabramurra DIGGING METHOD Excavator LOGGED BY Kannan Kaliappan NSW 2629 CHECKED BY Kannan Kaliappan COMMENTS Is Analysed? Graphic Log Depth (m) Samples **Material Description** Additional Observations ST-01-1482-TP8 Υ Clayey Silt. Dark brown. Moist. Loose. ST-01-1482-TP8-ASB8 ST-01-1482-TP8-MCR8 Shale observed at 0.4m BGL Termination Depth at:0.4m - Rock refusal - 0.5 1 - 1.5 2 - 2.5 3 - 3.5 4 - 4.5 5 - 5.5

K2 CONSULTING GROUP

PROJECT NUMBER ST-01-1482 **DIGGING DATE 10/05/2022** COORDINATES 35°54'19"S 148°27'00"E PROJECT NAME Environmental Site Investigation DIGGING COMPANY CLIENT Selwyn Snow Resort Pty Ltd. DIGGER SURFACE ELEVATION 1556m AHD ADDRESS 213A Kings Cross Road, Cabramurra DIGGING METHOD Excavator LOGGED BY Kannan Kaliappan NSW 2629 CHECKED BY Kannan Kaliappan COMMENTS Is Analysed? Graphic Log Depth (m) **Material Description** Additional Observations Samples Sandstone observed at 0.2m BGL ST-01-1482-TP9 Υ Clayey Silt. Gravelly. Dark brown. Moist. Loose. 9 ST-01-1482-TP9-ASB9 ST-01-1482-TP9-MCR9 Termination Depth at:0.2m - Rock refusal - 0.5 1 - 1.5 2 - 2.5 3 - 3.5 4 - 4.5 5 - 5.5

K2 CONSULTING GROUP

PROJECT NUMBER ST-01-1482 **DIGGING DATE 10/05/2022** COORDINATES 35°54'19"S 148°27'01"E PROJECT NAME Environmental Site Investigation DIGGING COMPANY CLIENT Selwyn Snow Resort Pty Ltd. DIGGER SURFACE ELEVATION 1556m AHD ADDRESS 213A Kings Cross Road, Cabramurra DIGGING METHOD Excavator LOGGED BY Kannan Kaliappan NSW 2629 CHECKED BY Kannan Kaliappan COMMENTS Is Analysed? Graphic Log Depth (m) **Material Description** Additional Observations Samples ST-01-1482-TP10 Υ Gravelly clayey Silt. Gravelly. Dark brown. Moist. Loose. 9 Trench observed at 0.3m ST-01-1482-TP10-ASB10 $\mathbf{\hat{v}}$ ST-01-1482-TP10-MCR10 BGL Termination Depth at:0.3m - 0.5 1 - 1.5 2 - 2.5 3 - 3.5 4 4.5 5 - 5.5

Appendix IV

Laboratory Results - Summary

			Metals and Metalloids					TRH					В					
K2 CONSULTING GR	OUP		Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (inorganic)	Nickel	Zinc	ТКН С6 - С9	TRH C10-C14	F1 ((C6-C10)- BTEX)	F2 (>C10-C16 less Naphthalene)	F3 (>C16-C34)	F4 (>C34-C40)	Benzene	Toluene
		PQL	2	0.4	5	5	5	0.1	5	5	20	20	20	50	100	100	0.1	0.1
Sample ID	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
HIL C (Recreational) HSL C (Public open spaces)	1m-<2m	Clay	300	100	240	20,000	600	400	800	30,000	-	-	-	-	-	-	NL	NL
ESL (Urban residential and public space)	100-8200	Clay											180	120	1300	5600	65.0	105
EIL(Public open spaces)			100		410	160	1,100		90	400								
Management Limit											-	-	800	1000	3,500	10,000		
ST-01-1482-TP1	0.3 m	10.05.2022	2.1	<0.4	17	20	14	<0.1	15	44	<20	<20	<20	<50	<100	<100	<0.1	<0.1
ST-01-1482-TP2	0.3 m	10.05.2022	<2	<0.4	13	24	12	<0.1	13	36	<20	<20	<20	<50	<100	<100	<0.1	<0.1
ST-01-1482-TP3	0.3 m	10.05.2022	<2	<0.4	14	17	12	<0.1	19	51	<20	<20	<20	<50	<100	<100	<0.1	<0.1
ST-01-1482-TP4	0.35 m	10.05.2022	4.6	<0.4	12	13	11	<0.1	20	59	<20	<20	<20	<50	<100	<100	<0.1	<0.1
ST-01-1482-TP5	0.35 m	10.05.2022	<2	<0.4	12	12	10	<0.1	11	33	<20	<20	<20	<50	<100	<100	<0.1	<0.1
ST-01-1482-TP6	0.4 m	10.05.2022	<2	<0.4	17	25	19	<0.1	16	45	<20	<20	<20	<50	<100	<100	<0.1	<0.1
ST-01-1482-TP7	0.3 m	10.05.2022	<2	<0.4	20	24	15	<0.1	16	45	<20	<20	<20	<50	<100	<100	<0.1	<0.1
ST-01-1482-TP8	0.4 m	10.05.2022	<2	<0.4	22	18	13	<0.1	16	42	<20	<20	<20	<50	<100	<100	<0.1	<0.1
ST-01-1482-TP9	0.2 m	10.05.2022	<2	<0.4	10	16	8.7	<0.1	13	43	<20	<20	<20	<50	<100	<100	<0.1	<0.1
ST-01-1482-TP10	0.3 m	10.05.2022	3.6	<0.4	16	24	14	<0.1	19	45	<20	<20	<20	<50	<100	<100	<0.1	<0.1
ST-01-1482-TP1-BR1	0.3m	10.05.2022	<2	<0.4	14	19	10	<0.1	15	40	<20	<20	<20	<50	<100	<100	<0.1	<0.1
RPD1 (Duplicate)			0	0	6	4	7	0	10	20	0	0	0	0	0	0	0	0

NAD- No Asbestos Detected

Site Acceptance Criteria - Low Density Residential - as per National Environment Protection (Assessment of Site Contamination) Measure - Schedule B1 and B2

			TEX		РАН													
K2 CONSULTING GR	OUP		Ethylbenzene	Total Xylenes	Acenaphthene	Acenaphthylene	Anthracene	Benz(a) anthracene	Benzo(a)pyrene	Benzo(b,j)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Naphthalene
		PQL	0.1	0.3	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
Sample ID	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
HIL C (Recreational) HSL C (Public open spaces)	1m-<2m	Clav	NL	NL										300				
ESL (Urban residential and public space)	100-8200	Clay	125	45					1.4									
EIL(Public open spaces)		Cidy	125	15	170	0.7												170
Management Limit																		
ST-01-1482-TP1	0.3 m	10.05.2022	<0.1	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ST-01-1482-TP2	0.3 m	10.05.2022	<0.1	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ST-01-1482-TP3	0.3 m	10.05.2022	<0.1	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ST-01-1482-TP4	0.35 m	10.05.2022	<0.1	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ST-01-1482-TP5	0.35 m	10.05.2022	<0.1	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ST-01-1482-TP6	0.4 m	10.05.2022	<0.1	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ST-01-1482-TP7	0.3 m	10.05.2022	<0.1	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ST-01-1482-TP8	0.4 m	10.05.2022	<0.1	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ST-01-1482-TP9	0.2 m	10.05.2022	<0.1	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ST-01-1482-TP10	0.3 m	10.05.2022	<0.1	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ST-01-1482-TP1-BR1	0.3m	10.05.2022	<0.1	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
RPD1 (Duplicate)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
					-	-	-					-		-		-		-

NAD- No Asbestos Detected

Site Acceptance Criteria - Low Density Residential - as per National Environment Protection (Assessment of Site Contamination) Measur

Selwyn Snow R	esort Pty Ltd
---------------	---------------

								OCP							OPP		
	OUP		Phenanthrene	Pyrene	PAH (Total)	Carcinogenic PAHs as B(a)P TEQ	DDT+DDE+DDD	Aldrin & Dieldrin	Total Chlordane	Total Endosulfan	Endrin	Heptachlor	Hexachlorobenze ne	Methoxychlor	Chlorpyriphos	Total Nitrogen	Nitrite (NO ₂)
		PQL	0.50	0.50	0.50	0.50	0.05	0.05	0.10	0.05	0.05	0.05	0.05	0.05	0.20	10.00	5.00
Sample ID	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
HIL C (Recreational)	1	Class			400	4	400	9	80	400	20	9	15	500	300		
HSL C (Public open spaces) ESL (Urban residential and public space)	1m-<2m	Clay Clay															
EIL(Public open spaces)		Ciay					180										
Management Limit																	
ST-01-1482-TP1	0.3 m	10.05.2022	<0.5	<0.5	<0.5	<0.5	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	530	<5
ST-01-1482-TP2	0.3 m	10.05.2022	<0.5	<0.5	<0.5	<0.5	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	1800	<5
ST-01-1482-TP3	0.3 m	10.05.2022	<0.5	<0.5	<0.5	<0.5	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	1200	<5
ST-01-1482-TP4	0.35 m	10.05.2022	<0.5	<0.5	<0.5	<0.5	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	40	<5
ST-01-1482-TP5	0.35 m	10.05.2022	<0.5	<0.5	<0.5	<0.5	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	350	<5
ST-01-1482-TP6	0.4 m	10.05.2022	<0.5	<0.5	<0.5	<0.5	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	1100	<5
ST-01-1482-TP7	0.3 m	10.05.2022	<0.5	<0.5	<0.5	<0.5	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	730	<5
ST-01-1482-TP8	0.4 m	10.05.2022	<0.5	<0.5	<0.5	<0.5	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	920	<5
ST-01-1482-TP9	0.2 m	10.05.2022	<0.5	<0.5	<0.5	<0.5	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	1900	<5
ST-01-1482-TP10	0.3 m	10.05.2022	<0.5	<0.5	<0.5	<0.5	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	900	<5
ST-01-1482-TP1-BR1	0.3m	10.05.2022	<0.5	<0.5	<0.5	<0.5	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2		
RPD1 (Duplicate)			0	0	0	0	0	0	0	0	0	0	0	0	0		

NAD- No Asbestos Detected

Site Acceptance Criteria - Low Density Residential - as per National Environment Protection (Assessment of Site Contamination) Measure

Nutrients												
K2 CONSULTING GR	K2 CONSULTING GROUP FOR 5.00 10.00 5.00 5.00 Image: State of the state of											
							MPN/g	N				
Sample ID HIL C (Recreational)	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg						
HSL C (Public open spaces)	1m-<2m	Clay										
ESL (Urban residential and public space)		Clay										
EIL(Public open spaces)												
Management Limit												
ST-01-1482-TP1	0.3 m	10.05.2022	<5	530	<5	460	1100	-				
ST-01-1482-TP2	0.3 m	10.05.2022	<5	1800	<5	360	63	-				
ST-01-1482-TP3	0.3 m	10.05.2022	<5	1200	<5	300	120	-				
ST-01-1482-TP4	0.35 m	10.05.2022	<5	40	<5	440	>2400	-				
ST-01-1482-TP5	0.35 m	10.05.2022	<5	350	<5	280	>2400	-				
ST-01-1482-TP6	0.4 m	10.05.2022	<5	1100	<5	380	790	-				
ST-01-1482-TP7	0.3 m	10.05.2022	<5	730	<5	390	420	-				
ST-01-1482-TP8	0.4 m	10.05.2022	<5	920	<5	350	230	-				
ST-01-1482-TP9	0.2 m	10.05.2022	<5	1900	<5	350	1200	-				
ST-01-1482-TP10	0.3 m	10.05.2022	<5	900	<5	270	4400	-				
ST-01-1482-TP1-BR1	0.3m	10.05.2022										
RPD1 (Duplicate)												

NAD- No Asbestos Detected

Site Acceptance Criteria - Low Density Residential - as per National Environment Protection (Assessment of Site Contamination) Measur

Appendix V

Laboratory Reports

K2 Enviro Solutions Suite 1A, Level 2, 802 Pacific Highway Gordon NSW 2768

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention:

Kannan Kaliappan

Report Project name Project ID Received Date 887680-S SELWYN SNOW RESORT PTY LTD ST-01-1482 May 11, 2022

Client Sample ID			ST-01-1482- TP1	ST-01-1482- TP2	ST-01-1482- TP3	ST-01-1482- TP4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22- My0027224	S22- My0027225	S22- My0027226	S22- My0027227
Date Sampled			May 10, 2022	May 10, 2022	May 10, 2022	May 10, 2022
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
втех						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	68	62	54	52
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			ST-01-1482- TP1	ST-01-1482- TP2	ST-01-1482- TP3	ST-01-1482- TP4
Sample Matrix			Soil	Soil	Soil	Soil
			S22-	S22-	S22-	S22-
Eurofins Sample No.			My0027224	My0027225	My0027226	My0027227
Date Sampled			May 10, 2022	May 10, 2022	May 10, 2022	May 10, 2022
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons		1				
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	98	92	91	95
p-Terphenyl-d14 (surr.)	1	%	108	103	102	105
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	112	102	105	108
Tetrachloro-m-xylene (surr.)	1	%	106	102	102	105
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Coumaphos	2	mg/kg	< 2	< 2	< 2	< 2
Demeton-S	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2

		ST-01-1482- TP1	ST-01-1482- TP2	ST-01-1482- TP3	ST-01-1482- TP4
		Soil S22-	Soil S22-	Soil S22-	Soil S22-
		My0027224	My0027225	My0027226	My0027227
		May 10, 2022	May 10, 2022	May 10, 2022	May 10, 2022
LOR	Unit				
-					
0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
0.2		< 0.2	< 0.2	< 0.2	< 0.2
0.2		< 0.2	< 0.2	< 0.2	< 0.2
0.2		< 0.2	< 0.2	< 0.2	< 0.2
0.2		< 0.2	< 0.2	< 0.2	< 0.2
0.2		< 0.2	< 0.2	< 0.2	< 0.2
0.2		< 0.2	< 0.2	< 0.2	< 0.2
0.2		< 0.2	< 0.2	< 0.2	< 0.2
0.2		< 0.2	< 0.2	< 0.2	< 0.2
0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
0.2		< 0.2	< 0.2	< 0.2	< 0.2
0.2		< 0.2	< 0.2	< 0.2	< 0.2
0.2		< 0.2		< 0.2	< 0.2
2		< 2	< 2	< 2	< 2
0.2		< 0.2	< 0.2	< 0.2	< 0.2
2		< 2	< 2	< 2	< 2
0.2		< 0.2	< 0.2	< 0.2	< 0.2
					< 0.2
					< 0.2
					< 0.2
					< 0.2
					< 0.2
0.2					< 0.2
					< 0.2
1					106
	,,,				
5	ma/ka	< 5	< 5	< 5	< 5
					< 5
-					< 5
					< 5
					40
					40
					12
	70	20		20	
10	ma/ka	460	360	300	440
	I IIIg/Kg	+00		300	440
2	malka	0.1	- 2	- 2	4.6
					4.6 < 0.4
					12
					<u>13</u> 11
					< 0.1
5	mg/kg	15	13	19	20
	0.2 0.2 <td>0.2 mg/kg 0.2 mg/kg 0.2<td>TP1 Soil Soil S22- My0027224 May 10, 2022 LOR Unit 0.2 mg/kg < 0.2</td> 0.2 mg/kg < 0.2</td> 0.2 mg/kg < 0.2	0.2 mg/kg 0.2 <td>TP1 Soil Soil S22- My0027224 May 10, 2022 LOR Unit 0.2 mg/kg < 0.2</td> 0.2 mg/kg < 0.2	TP1 Soil Soil S22- My0027224 May 10, 2022 LOR Unit 0.2 mg/kg < 0.2	TP1 TP2 Soil Soil	TP1 TP2 TP3 Soil Soil Soil Soil S22- My0027224 My0027225 May 10, 2022 LOR Unit

Client Sample ID			ST-01-1482- TP5	ST-01-1482- TP6	ST-01-1482- TP7	ST-01-1482- TP8
Sample Matrix			Soil S22-	Soil S22-	Soil S22-	Soil S22-
Eurofins Sample No.			My0027228	My0027229	My0027230	My0027231
Date Sampled			May 10, 2022	May 10, 2022	May 10, 2022	May 10, 2022
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
BTEX		00				
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	<u>%</u>	50	56	50	51
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg			< 0.5	< 0.5
	0.5	mg/kg mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
		mg/kg mg/kg	< 0.5	< 0.5		
Total PAH*	0.5		< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.) p-Terphenyl-d14 (surr.)	1	%	86 96	96 112	95 105	96

Client Sample ID			ST-01-1482- TP5	ST-01-1482- TP6	ST-01-1482- TP7	ST-01-1482- TP8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22- My0027228	S22- My0027229	S22- My0027230	S22- My0027231
Date Sampled			May 10, 2022	May 10, 2022	May 10, 2022	May 10, 2022
Test/Reference	LOR	Unit				
Organochlorine Pesticides	Loix	Onit				
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	95	105	109	114
Tetrachloro-m-xylene (surr.)	1	%	95	107	104	108
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Coumaphos	2	mg/kg	< 2	< 2	< 2	< 2
Demeton-S	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dimethoate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
EPN	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Malathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2

Client Sample ID			ST-01-1482- TP5	ST-01-1482- TP6	ST-01-1482- TP7	ST-01-1482- TP8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22- My0027228	S22- My0027229	S22- My0027230	S22- My0027231
Date Sampled			May 10, 2022	May 10, 2022	May 10, 2022	May 10, 2022
Test/Reference	LOR	Unit				
Organophosphorus Pesticides	•					
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Monocrotophos	2	mg/kg	< 2	< 2	< 2	< 2
Naled	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Omethoate	2	mg/kg	< 2	< 2	< 2	< 2
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Terbufos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	98	110	109	116
Ammonia (as N)	5	mg/kg	< 5	< 5	< 5	< 5
Nitrate & Nitrite (as N)	5	mg/kg	< 5	< 5	< 5	< 5
Nitrate (as N)	5	mg/kg	< 5	< 5	< 5	< 5
Nitrite (as N)	5	mg/kg	< 5	< 5	< 5	< 5
Total Kjeldahl Nitrogen (as N)	10	mg/kg	350	1100	730	920
Total Nitrogen (as N)*	10	mg/kg	350	1100	730	920
% Moisture	1	%	28	26	25	34
Heavy Metals						
Phosphorus	10	mg/kg	280	380	390	350
Heavy Metals						
Arsenic	2	mg/kg	< 2	< 2	< 2	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	12	17	20	22
Copper	5	mg/kg	12	25	24	18
Lead	5	mg/kg	10	19	15	13
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	11	16	16	16
Zinc	5	mg/kg	33	45	45	42

Client Sample ID			ST-01-1482- TP9	ST-01-1482- TP10
Sample Matrix			Soil	Soil
Eurofins Sample No.			S22- My0027232	S22- My0027233
Date Sampled			May 10, 2022	May 10, 2022
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons				
TRH C6-C9	20	mg/kg	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50

Client Sample ID			ST-01-1482- TP9	ST-01-1482- TP10
Sample Matrix			Soil	Soil
			S22-	S22-
Eurofins Sample No.			My0027232	My0027233
Date Sampled			May 10, 2022	May 10, 2022
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100
BTEX				
Benzene	0.1	mg/kg	< 0.1	< 0.1
	0.1	mg/kg	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	51	53
Polycyclic Aromatic Hydrocarbons				0.5
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5 < 0.5	< 0.5
Acenaphthylene Anthracene	0.5	mg/kg mg/kg	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	94	94
p-Terphenyl-d14 (surr.)	1	%	107	110
Organochlorine Pesticides				
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05
a-HCH	0.05	mg/kg	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05

Client Sample ID			ST-01-1482- TP9	ST-01-1482- TP10
Sample Matrix			Soil S22-	Soil S22-
Eurofins Sample No.			522- My0027232	522- My0027233
Date Sampled			May 10, 2022	May 10, 2022
Test/Reference	LOR	Unit		
Organochlorine Pesticides	·			
Dieldrin	0.05	mg/kg	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	107	109
Tetrachloro-m-xylene (surr.)	1	%	103	105
Organophosphorus Pesticides				
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2
Bolstar	0.2	mg/kg	< 0.2	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2
Coumaphos	2	mg/kg	< 2	< 2
Demeton-S	0.2	mg/kg	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2
Dimethoate	0.2	mg/kg	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	< 0.2
EPN	0.2	mg/kg	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2
Malathion	0.2	mg/kg	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2
Monocrotophos	2	mg/kg	< 2	< 2
Naled	0.2	mg/kg	< 0.2	< 0.2
Omethoate	2	mg/kg	< 2	< 2
Phorate	0.2	mg/kg	< 0.2	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2

Client Sample ID			ST-01-1482- TP9	ST-01-1482- TP10
Sample Matrix			Soil	Soil
Eurofins Sample No.			S22- My0027232	S22- My0027233
Date Sampled			May 10, 2022	May 10, 2022
Test/Reference	LOR	Unit		
Organophosphorus Pesticides				
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2
Terbufos	0.2	mg/kg	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	108	113
Ammonia (as N)	5	mg/kg	< 5	< 5
Nitrate & Nitrite (as N)	5	mg/kg	< 5	< 5
Nitrate (as N)	5	mg/kg	< 5	< 5
Nitrite (as N)	5	mg/kg	< 5	< 5
Total Kjeldahl Nitrogen (as N)	10	mg/kg	1900	900
Total Nitrogen (as N)*	10	mg/kg	1900	900
% Moisture	1	%	26	24
Heavy Metals		·		
Phosphorus	10	mg/kg	350	270
Heavy Metals				
Arsenic	2	mg/kg	< 2	3.6
Cadmium	0.4	mg/kg	< 0.4	< 0.4
Chromium	5	mg/kg	10	16
Copper	5	mg/kg	16	24
Lead	5	mg/kg	8.7	14
Mercury	0.1	mg/kg	< 0.1	< 0.1
Nickel	5	mg/kg	13	19
Zinc	5	mg/kg	43	45

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	May 12, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 12, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 12, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	May 12, 2022	14 Days
- Method: LTM-ORG-2010 BTEX and Volatile TRH			
Polycyclic Aromatic Hydrocarbons	Sydney	May 12, 2022	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Organochlorine Pesticides	Sydney	May 12, 2022	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Organophosphorus Pesticides	Sydney	May 12, 2022	14 Days
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS			
Metals M8	Sydney	May 12, 2022	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P			
Ammonia (as N)	Sydney	May 12, 2022	28 Days
- Method: LTM-INO-4200 Ammonia by Discrete Analyser			
Nitrate & Nitrite (as N)	Melbourne	May 13, 2022	28 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA			
Nitrate (as N)	Melbourne	May 13, 2022	28 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA			
Nitrite (as N)	Melbourne	May 13, 2022	28 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA			
Total Kjeldahl Nitrogen (as N)	Melbourne	May 13, 2022	28 Days
- Method: APHA 4500-Norg B,D Total Kjeldahl Nitrogen by FIA			
Heavy Metals	Sydney	May 12, 2022	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Sydney	May 11, 2022	14 Days
- Method: LTM-GEN-7080 Moisture			

	eurofi	ns			Eurofins Environme ABN: 50 005 085 521	ent Te	sting	Austra	ia Pty Lt	d		Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environmen NZBN: 9429046024954	t Testing NZ Limited
web: w	ww.eurofins.com.au EnviroSales@eurofins	Envi	ironment	Testing	Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 500 NATA # 1261 Site # 125	11 175 G 0 P	irrawee	jowar R en NSW +61 2 9		Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: - 461 2 4968 8448 NATA # 1261 Site # 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	bool WA 6106 Penrose, Auckland 1061 : +61 8 6253 4444 Phone : +64 9 526 45 51	
	mpany Name: dress:	K2 Enviro So Suite 1A, Lev Gordon NSW 2768		cific Highway			R P	order eport hone ax:		887680 0449 669 559		Received: Due: Priority: Contact Name:	May 11, 2022 5:14 May 13, 2022 2 Day Kannan Kaliappan	PM
	oject Name: oject ID:	SALWYN SN ST-01-1482	NOW RESOR	T PTY LTD								Eurofins Analytical	Services Manager : I	Jrsula Long
		Sa	mple Detail			Moisture Set	Eurofins Suite B10	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P						
	ourne Laborato							Х						
	ney Laboratory					Х	X	X						
	bane Laboratory													
	ield Laboratory n Laboratory - N			2				+						
	rnal Laboratory		10 # 2010											
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
1	ST-01-1482- TP1	May 10, 2022	9:00AM	Soil	S22- My0027224	х	x	х						
2	ST-01-1482- TP2	May 10, 2022	9:00AM	Soil	S22- My0027225	х	x	х						
3	ST-01-1482- TP3	May 10, 2022	9:00AM	Soil	S22- My0027226	х	x	х						
	TP4	May 10, 2022	9:00AM	Soil	S22- My0027227	х	x	х						
	ST-01-1482- TP5	May 10, 2022	9:00AM	Soil	S22- My0027228	х	x	х						
6	ST-01-1482-	May 10, 2022	9:00AM	Soil	S22-	Х	Х	Х						

🎎 eurofir	Seurofins ABN: 50 005 085 5 Melbourne				ent Testing Australia Pty Ltd							Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environment Testing NZ Limited NZBN: 9429046024954		
Environment Testing		Melbourne Sydney 6 Monterey Road 179 Magowar Road Dandenong South VIC 3175 Girraween NSW 2066 Phone : +61 3 8564 5000 Phone : +61 3 9900 8400 NATA # 1261 Site # 1254 NATA # 1261 Site # 18217		1 N 400 F	Murarrie QLD 4172 Mayfield Phone : +61 7 3902 4600 PO Box NATA # 1261 Site # 20794 Phone :		wcastle 2 Industrial Drive yfield East NSW 2304 Box 60 Wickham 2293 one : +61 2 4968 8448 TA # 1261 Site # 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290					
Company Name: Address:	K2 Enviro So Suite 1A, Le Gordon NSW 2768	blutions vel 2, 802 Pac	cific Highway			R P	rder eport hone ax:		887680 0449 669 559			Received: Due: Priority: Contact Name:	May 11, 2022 5:14 May 13, 2022 2 Day Kannan Kaliappan	PM	
Project Name: SALWYN SNOW RESORT PTY LTD Project ID: ST-01-1482											Eurofins Analytical	Services Manager : I	Jrsula Long		
	Sa	mple Detail			Moisture Set	Eurofins Suite B10	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P								
Melbourne Laborator	y - NATA # 12	61 Site # 125	4				Х								
Sydney Laboratory -					X	X	Х								
Brisbane Laboratory															
Mayfield Laboratory															
Perth Laboratory - N/	ATA # 2377 Si	te # 2370													
External Laboratory				14.0007000			-								
TP6 7 ST-01-1482- TP7	May 10, 2022	9:00AM	Soil	My0027229 S22- My0027230	x	x	x								
	May 10, 2022	9:00AM	Soil	S22- My0027231	x	x	x								
TP9	May 10, 2022	9:00AM	Soil	S22- My0027232	x	x	x								
TP10	May 10, 2022	9:00AM	Soil	S22- My0027233	x	x	x								
Test Counts					10	10	10								

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

onito		
mg/kg: milligrams per kilogram	mg/L: milligrams per litre	µg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

Terms	
APHA	American Public Health Association
COC	Chain of Custody
СР	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
твто	Tributyltin oxide (<i>bis</i> -tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Method Blank Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Naphthalene TRH C6-C10 TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Method Blank Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Method Blank Polycyclic Aromatic Hydrocarbons Acenaphthylene Acenaphthylene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<pre>< 20 < 20 < 50 < 50 < 50 < 0.5 < 20 < 50 < 50 < 100 < 100 </pre>		20 20 50 50 0.5 20 50 100 100	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Naphthalene TRH C6-C10 TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Method Blank Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Method Blank Polycyclic Aromatic Hydrocarbons Acenaphthylene Actionaphthylene Anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 20 < 50 < 50 < 0.5 < 20 < 50 < 100 < 100 < 0.1 < 0.1		20 50 0.5 20 50 100	Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14TRH C15-C28TRH C29-C36NaphthaleneTRH C6-C10TRH >C10-C16TRH >C16-C34TRH >C34-C40Method BlankBETEXBenzeneTolueneEthylbenzenem&p-Xyleneso-XyleneXylenes - Total*Method BlankPolycyclic Aromatic HydrocarbonsAcenaphthyleneAnthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 20 < 50 < 50 < 0.5 < 20 < 50 < 100 < 100 < 0.1 < 0.1		20 50 0.5 20 50 100	Pass Pass Pass Pass Pass Pass Pass	
TRH C15-C28 TRH C29-C36 Naphthalene TRH C6-C10 TRH >C10-C16 TRH >C34-C40 Method Blank BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Method Blank Polycyclic Aromatic Hydrocarbons Acenaphthylene Anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 50 < 50 < 0.5 < 20 < 50 < 100 < 100 < 0.1 < 0.1		50 50 0.5 20 50 100	Pass Pass Pass Pass Pass Pass	
TRH C29-C36 Naphthalene Naphthalene TRH C6-C10 TRH >C10-C16 TRH >C34-C40 Method Blank Method Blank BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Method Blank Polycyclic Aromatic Hydrocarbons Acenaphthylene Acenaphthylene Anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 50 < 0.5 < 20 < 50 < 100 < 100 < 0.1 < 0.1		50 0.5 20 50 100	Pass Pass Pass Pass Pass	
Naphthalene TRH C6-C10 TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Method Blank BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Method Blank Polycyclic Aromatic Hydrocarbons Acenaphthylene Anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 20 < 50 < 100 < 100 < 0.1 < 0.1		0.5 20 50 100	Pass Pass Pass Pass	
TRH C6-C10 TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Method Blank Method Blank BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Method Blank Polycyclic Aromatic Hydrocarbons Acenaphthylene Acenaphthylene Anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 20 < 50 < 100 < 100 < 0.1 < 0.1		20 50 100	Pass Pass Pass	
TRH >C10-C16 I TRH >C16-C34 I TRH >C34-C40 I Method Blank I BETEX I Benzene I Toluene I Ethylbenzene I m&p-Xylenes I o-Xylene I Xylenes - Total* I Method Blank I Polycyclic Aromatic Hydrocarbons I Acenaphthene I Anthracene I	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 50 < 100 < 100 < 0.1 < 0.1		50 100	Pass Pass	
TRH >C16-C34 TRH >C34-C40 Method Blank BETEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Method Blank Polycyclic Aromatic Hydrocarbons Acenaphthylene Acenaphthylene Anthracene Anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 100 < 100 < 0.1 < 0.1		100	Pass	
TRH >C34-C40 Method Blank BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Method Blank Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 100 < 0.1 < 0.1				
Method Blank BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Method Blank Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.1 < 0.1		100	Pass	
BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Method Blank Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.1		1		
Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Method Blank Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene	mg/kg mg/kg mg/kg mg/kg	< 0.1				
Toluene Ethylbenzene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Method Blank Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Anthracene	mg/kg mg/kg mg/kg mg/kg	< 0.1	1			
Ethylbenzene m&p-Xylenes m&p-Xylenes o-Xylene o-Xylene Xylenes - Total* Method Blank Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Anthracene	mg/kg mg/kg mg/kg mg/kg			0.1	Pass	
m&p-Xylenes o-Xylene o-Xylene Xylenes - Total* Method Blank Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Anthracene	mg/kg mg/kg mg/kg	~ 0.1		0.1	Pass	
m&p-Xylenes o-Xylene o-Xylene Xylenes - Total* Method Blank Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Anthracene	mg/kg mg/kg	, ∖ ∪.1		0.1	Pass	
o-Xylene Xylenes - Total* Method Blank Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene	mg/kg	< 0.2		0.2	Pass	
Xylenes - Total* Method Blank Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene		< 0.1		0.1	Pass	
Method Blank Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene	mg/kg	< 0.3		0.3	Pass	
Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene						
Acenaphthene Acenaphthylene Anthracene						
Acenaphthylene Anthracene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene	mg/kg	< 0.5		0.5	Pass	
Total PAH*	mg/kg	< 0.5		0.5	Pass	
Method Blank	iiig/kg	0.0		0.0	1 033	
Organochlorine Pesticides		[1		
Chlordanes - Total	mg/kg	< 0.1		0.1	Pass	
4.4'-DDD	mg/kg	< 0.05		0.05	Pass	
4.4-DDD 4.4'-DDE	mg/kg	< 0.05		0.05	Pass	
4.4-DDE 4.4'-DDT	mg/kg	< 0.05		0.05	Pass	
a-HCH		< 0.05		0.05	Pass	
Aldrin	mg/kg			0.05		
	mg/kg	< 0.05		1	Pass	
b-HCH	mg/kg	< 0.05		0.05	Pass	
d-HCH	mg/kg	< 0.05		0.05	Pass	
Dieldrin Endegulten I	mg/kg	< 0.05		0.05	Pass	
Endosulfan I	mg/kg	< 0.05	1 1	0.05	Pass	i
Endosulfan II Endosulfan sulphate	mg/kg	< 0.05		0.05	Pass	l

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Endrin	mg/kg	< 0.05		0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05		0.05	Pass	
Endrin ketone	mg/kg	< 0.05		0.05	Pass	
g-HCH (Lindane)	mg/kg	< 0.05		0.05	Pass	
Heptachlor	mg/kg	< 0.05		0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05		0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05		0.05	Pass	
Methoxychlor	mg/kg	< 0.05		0.05	Pass	
Toxaphene	mg/kg	< 0.5		0.5	Pass	
Method Blank						
Organophosphorus Pesticides	1					
Azinphos-methyl	mg/kg	< 0.2		0.2	Pass	
Bolstar	mg/kg	< 0.2		0.2	Pass	
Chlorfenvinphos	mg/kg	< 0.2		0.2	Pass	
Chlorpyrifos	mg/kg	< 0.2		0.2	Pass	
Chlorpyrifos-methyl	mg/kg	< 0.2		0.2	Pass	
Coumaphos	mg/kg	< 2		2	Pass	
Demeton-S	mg/kg	< 0.2		0.2	Pass	
Demeton-O	mg/kg	< 0.2		0.2	Pass	
Diazinon	mg/kg	< 0.2		0.2	Pass	
Dichlorvos	mg/kg	< 0.2		0.2	Pass	
Dimethoate	mg/kg	< 0.2		0.2	Pass	
Disulfoton	mg/kg	< 0.2		0.2	Pass	
EPN	mg/kg	< 0.2		0.2	Pass	
Ethion	mg/kg	< 0.2		0.2	Pass	
Ethoprop	mg/kg	< 0.2		0.2	Pass	
Ethyl parathion	mg/kg	< 0.2		0.2	Pass	
Fenitrothion	mg/kg	< 0.2		0.2	Pass	
Fensulfothion	mg/kg	< 0.2		0.2	Pass	
Fenthion	mg/kg	< 0.2		0.2	Pass	
Malathion	mg/kg	< 0.2		0.2	Pass	
Merphos	mg/kg	< 0.2		0.2	Pass	
Methyl parathion	mg/kg	< 0.2		0.2	Pass	
Mevinphos	mg/kg	< 0.2		0.2	Pass	
Monocrotophos	mg/kg	< 2		2	Pass	
Naled	mg/kg	< 0.2		0.2	Pass	
Omethoate	mg/kg	< 2		2	Pass	
Phorate	mg/kg	< 0.2		0.2	Pass	
Pirimiphos-methyl	mg/kg	< 0.2		0.2	Pass	
Pyrazophos	mg/kg	< 0.2		0.2	Pass	
Ronnel	mg/kg	< 0.2		0.2	Pass	
Terbufos	mg/kg	< 0.2		0.2	Pass	
Tetrachlorvinphos	mg/kg	< 0.2		0.2	Pass	
Tokuthion	mg/kg	< 0.2		0.2	Pass	
Trichloronate	mg/kg	< 0.2		0.2	Pass	
Method Blank						
Ammonia (as N)	mg/kg	< 5		5	Pass	
Method Blank						
Heavy Metals						
Phosphorus	mg/kg	< 10		10	Pass	
Method Blank		· · · · · · · · · · · · · · · · · · ·	· · ·			
Heavy Metals						
Arsenic	mg/kg	< 2		2	Pass	
Cadmium	mg/kg	< 0.4		0.4	Pass	i

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery				-	
Total Recoverable Hydrocarbons					
TRH C6-C9	%	86	70-130	Pass	
TRH C10-C14	%	100	70-130	Pass	
Naphthalene	%	107	70-130	Pass	
TRH C6-C10	%	86	70-130	Pass	
TRH >C10-C16	%	104	70-130	Pass	
LCS - % Recovery				-	
BTEX					
Benzene	%	98	70-130	Pass	
Toluene	%	100	70-130	Pass	
Ethylbenzene	%	98	70-130	Pass	
m&p-Xylenes	%	105	70-130	Pass	
o-Xylene	%	108	70-130	Pass	
Xylenes - Total*	%	106	70-130	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	111	70-130	Pass	
Acenaphthylene	%	116	70-130	Pass	
Anthracene	%	113	70-130	Pass	
Benz(a)anthracene	%	116	70-130	Pass	
Benzo(a)pyrene	%	118	70-130	Pass	
Benzo(b&j)fluoranthene	%	116	70-130	Pass	
Benzo(g.h.i)perylene	%	101	70-130	Pass	
Benzo(k)fluoranthene	%	114	70-130	Pass	
Chrysene	%	102	70-130	Pass	
Dibenz(a.h)anthracene	%	104	70-130	Pass	
Fluoranthene	%	110	70-130	Pass	
Fluorene	%	114	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	106	70-130	Pass	
Naphthalene	%	104	70-130	Pass	
Phenanthrene	%	121	70-130	Pass	
Pyrene	%	110	70-130	Pass	
LCS - % Recovery				-	
Organochlorine Pesticides					
Chlordanes - Total	%	93	70-130	Pass	
4.4'-DDD	%	105	70-130	Pass	
4.4'-DDE	%	98	70-130	Pass	
4.4'-DDT	%	101	70-130	Pass	
а-НСН	%	95	70-130	Pass	
Aldrin	%	96	70-130	Pass	
b-HCH	%	95	70-130	Pass	
d-HCH	%	97	70-130	Pass	
Dieldrin	%	95	70-130	Pass	
Endosulfan I	%	91	70-130	Pass	
Endosulfan II	%	95	70-130	Pass	
Endosulfan sulphate	%	89	70-130	Pass	
Endrin	%	105	70-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Endrin aldehyde			%	128		70-130	Pass	
Endrin ketone			%	88		70-130	Pass	
g-HCH (Lindane)			%	104		70-130	Pass	
Heptachlor			%	120		70-130	Pass	
Heptachlor epoxide			%	99		70-130	Pass	
Hexachlorobenzene			%	99		70-130	Pass	
Methoxychlor			%	79		70-130	Pass	
LCS - % Recovery								
Organophosphorus Pesticides								
Diazinon			%	130		70-130	Pass	
Dimethoate			%	106		70-130	Pass	
Ethion			%	119		70-130	Pass	
Fenitrothion			%	125		70-130	Pass	
Methyl parathion			%	117		70-130	Pass	
Mevinphos			%	124		70-130	Pass	
LCS - % Recovery				1				
Ammonia (as N)			%	102		70-130	Pass	
Total Kjeldahl Nitrogen (as N)			%	80		70-130	Pass	
LCS - % Recovery					· · · · · ·			
Heavy Metals								
Phosphorus			%	88		80-120	Pass	
LCS - % Recovery			,,,			00.120	1 400	
Heavy Metals								
Arsenic			%	88		80-120	Pass	
Cadmium			%	96		80-120	Pass	
Chromium			%	93		80-120	Pass	
Copper			%	94		80-120	Pass	
Lead			%	99		80-120	Pass	
Mercury			%	102		80-120	Pass	
Nickel			%	90		80-120	Pass	
Zinc			%	88		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery		Source				Linits	Linns	Code
Total Recoverable Hydrocarbons				Result 1		1		
TRH C10-C14	S22-My0011033	NCD	%	73		70-130	Pass	
TRH >C10-C16	S22-My0011033	NCP	%	76		70-130	Pass	
Spike - % Recovery	022-10190011033		70	10		70-130	1 035	
Polycyclic Aromatic Hydrocarbo	26			Result 1				
Acenaphthene	S22-My0013782	NCP	%	99		70-130	Pass	
Acenaphthylene	S22-My0013782	NCP	%	106		70-130	Pass	
		NCP		96				
Anthracene Benz(a)anthracene	S22-My0013782 S22-My0013782	NCP	% %	96 112		70-130	Pass Pass	
	S22-My0013782 S22-My0013782	NCP	%	112		70-130	Pass	
Benzo(a)pyrene Benzo(b&j)fluoranthene	S22-My0013782	NCP	%	113		70-130	Pass	
		NCP		99		70-130		
Benzo(g.h.i)perylene	S22-My0013782	NCP	%			70-130	Pass	
Benzo(k)fluoranthene	S22-My0013782	NCP	%	104		70-130	Pass	
Chrysene Dibenz(a b)anthracana	S22-My0013782	NCP	%	100 98		70-130	Pass	
Dibenz(a.h)anthracene	S22-My0013782	NCP	%			70-130	Pass	
Fluoranthene	S22-My0013782		%	116		70-130	Pass	
Fluorene	S22-My0013782	NCP	%	102		70-130	Pass	
Indeno(1.2.3-cd)pyrene	S22-My0013782	NCP	%	100		70-130	Pass	
Naphthalene	S22-My0013782	NCP	%	99	<u>├</u> ───	70-130	Pass	
Phenanthrene	S22-My0013782	NCP	%	112		70-130	Pass	
Pyrene	S22-My0013782	NCP	%	120		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				· ·	· · ·		
Organochlorine Pesticides				Result 1			
Chlordanes - Total	S22-My0013782	NCP	%	94	70-130	Pass	
4.4'-DDD	S22-My0013782	NCP	%	100	70-130	Pass	
4.4'-DDE	S22-My0013782	NCP	%	95	70-130	Pass	
4.4'-DDT	S22-My0013782	NCP	%	99	70-130	Pass	
a-HCH	S22-My0013782	NCP	%	92	70-130	Pass	
Aldrin	S22-My0013782	NCP	%	91	70-130	Pass	
b-HCH	S22-My0013782	NCP	%	99	70-130	Pass	
d-HCH	S22-My0013782	NCP	%	95	70-130	Pass	
Dieldrin	S22-My0013782	NCP	%	96	70-130	Pass	
Endosulfan I	S22-My0013782	NCP	%	97	70-130	Pass	
Endosulfan II	S22-My0013782	NCP	%	102	70-130	Pass	
Endosulfan sulphate	S22-My0013782	NCP	%	90	70-130	Pass	
Endrin	S22-My0013782	NCP	%	121	70-130	Pass	
Endrin aldehyde	S22-My0009650	NCP	%	122	70-130	Pass	
Endrin ketone	S22-My0013782	NCP	%	90	70-130	Pass	
g-HCH (Lindane)	S22-My0013782	NCP	%	91	70-130	Pass	
Heptachlor	S22-My0013782	NCP	%	117	70-130	Pass	
Heptachlor epoxide	S22-My0013782	NCP	%	99	70-130	Pass	
Hexachlorobenzene	S22-My0013782	NCP	%	97	70-130	Pass	
Methoxychlor	S22-My0013782	NCP	%	81	70-130	Pass	
Spike - % Recovery							
Organophosphorus Pesticid	les			Result 1			
Diazinon	S22-My0013782	NCP	%	117	70-130	Pass	
Dimethoate	S22-My0013782	NCP	%	113	70-130	Pass	
Ethion	S22-My0013782	NCP	%	117	70-130	Pass	
Fenitrothion	S22-My0013782	NCP	%	127	70-130	Pass	
Mevinphos	S22-My0013782	NCP	%	115	70-130	Pass	
Spike - % Recovery				1			
Total Recoverable Hydrocar	bons			Result 1			
TRH C6-C9	S22-My0027225	CP	%	89	70-130	Pass	
Naphthalene	S22-My0027225	CP	%	85	70-130	Pass	
TRH C6-C10	S22-My0027225	CP	%	91	70-130	Pass	
Spike - % Recovery				1 1		1	
BTEX	1			Result 1			
Benzene	S22-My0027225	CP	%	91	70-130	Pass	
Toluene	S22-My0027225	CP	%	95	70-130	Pass	
Ethylbenzene	S22-My0027225	CP	%	98	70-130	Pass	
m&p-Xylenes	S22-My0027225	CP	%	96	70-130	Pass	
o-Xylene	S22-My0027225	CP	%	99	70-130	Pass	
Xylenes - Total*	S22-My0027225	CP	%	97	70-130	Pass	
Spike - % Recovery				1 1		1	
				Result 1			
Ammonia (as N)	S22-My0027225	CP	%	100	70-130	Pass	
Spike - % Recovery				1 1		1	
Heavy Metals				Result 1			
Phosphorus	S22-My0027225	CP	%	125	75-125	Pass	<u> </u>
Spike - % Recovery						1	l
Heavy Metals				Result 1			
Arsenic	S22-My0027225	CP	%	90	75-125	Pass	ļ
Cadmium	S22-My0027225	CP	%	96	75-125	Pass	L
Chromium	S22-My0027225	CP	%	93	75-125	Pass	
Copper	S22-My0027225	CP	%	94	75-125	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Lead	S22-My0027225	CP	%	103			75-125	Pass	
Mercury	S22-My0027225	CP	%	105			75-125	Pass	
Nickel	S22-My0027225	CP	%	91			75-125	Pass	
Zinc	S22-My0027225	CP	%	91			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				1	1		1	1	
Total Recoverable Hydrocarbons	1			Result 1	Result 2	RPD			
TRH C6-C9	S22-My0027224	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S22-My0027224	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S22-My0027224	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S22-My0027224	CP	mg/kg	< 50	< 50	<1	30%	Pass	
Naphthalene	S22-My0027224	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S22-My0027224	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S22-My0027224	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S22-My0027224	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S22-My0027224	СР	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate				1			1		
втех				Result 1	Result 2	RPD			
Benzene	S22-My0027224	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S22-My0027224	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S22-My0027224	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S22-My0027224	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S22-My0027224	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S22-My0027224	СР	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbon	S			Result 1	Result 2	RPD			
Acenaphthene	S22-My0020751	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S22-My0020751	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S22-My0020751	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S22-My0020751	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S22-My0020751	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S22-My0020751	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S22-My0020751	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S22-My0020751	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S22-My0020751	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S22-My0020751	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S22-My0020751	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S22-My0020751	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S22-My0020751	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S22-My0020751	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S22-My0020751	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S22-My0020751	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate	, , , , , , , , , , , , , , , , , , , ,								
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S22-My0020751	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S22-My0020751	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S22-My0020751	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S22-My0020751	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-HCH	S22-My0020751	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S22-My0020751	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-HCH	S22-My0020751	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-HCH	S22-My0020751	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S22-My0020751	NCP					30%		
			mg/kg	< 0.05	< 0.05	<1		Pass	
Endosulfan I	S22-My0020751	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	

Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Endosulfan II	S22-My0020751	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S22-My0020751	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S22-My0020751	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S22-My0020751	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S22-My0020751	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-HCH (Lindane)	S22-My0020751	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S22-My0020751	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S22-My0020751	NCP		< 0.05	< 0.05		30%	Pass	
· · ·		NCP	mg/kg			<1			
Hexachlorobenzene	S22-My0020751		mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S22-My0020751	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	S22-My0020751	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate					D 110				
Organophosphorus Pesticides				Result 1	Result 2	RPD		_	
Azinphos-methyl	S22-My0004596	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Bolstar	S22-My0004596	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorfenvinphos	S22-My0004596	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos	S22-My0004596	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos-methyl	S22-My0004596	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Coumaphos	S22-My0004596	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Demeton-S	S22-My0004596	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Demeton-O	S22-My0004596	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Diazinon	S22-My0004596	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dichlorvos	S22-My0004596	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dimethoate	S22-My0004596	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Disulfoton	S22-My0004596	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
EPN	S22-My0004596	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethion	S22-My0004596	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethoprop	S22-My0004596	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethyl parathion	S22-My0004596	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenitrothion	S22-My0004596	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fensulfothion	S22-My0004596	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenthion	S22-My0004596	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Malathion	S22-My0004596	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Merphos	S22-My0004596	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl parathion	S22-My0004596	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Mevinphos	S22-My0004596	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Monocrotophos	S22-My0004596	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Naled	S22-My0004596	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Omethoate	S22-My0004596	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Phorate	S22-My0004596	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pirimiphos-methyl	S22-My0004596	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pinniphos-methyl Pyrazophos	S22-My0004596	NCP		< 0.2	< 0.2	<1	30%	Pass	
Ronnel		NCP	mg/kg				30%		
	S22-My0004596		mg/kg	< 0.2	< 0.2	<1		Pass	
Terbufos Tetrachlan innhaa	S22-My0004596	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tetrachlorvinphos	S22-My0004596	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tokuthion	S22-My0004596	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Trichloronate	S22-My0004596	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate				D 1 1		000			
				Result 1	Result 2	RPD		+	
Ammonia (as N)	S22-My0027224	CP	mg/kg	< 5	< 5	<1	30%	Pass	
% Moisture	S22-My0027224	CP	%	28	29	4.0	30%	Pass	
Duplicate				1	1			_	
Heavy Metals	I			Result 1	Result 2	RPD			
Phosphorus	S22-My0027224	CP	mg/kg	460	400	13	30%	Pass	

Duplicate											
Heavy Metals			Result 1	Result 2	RPD						
Arsenic	S22-My0027224	CP	mg/kg	2.1	< 2	21	30%	Pass			
Cadmium	S22-My0027224	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass			
Chromium	S22-My0027224	CP	mg/kg	17	15	13	30%	Pass			
Copper	S22-My0027224	CP	mg/kg	20	17	12	30%	Pass			
Lead	S22-My0027224	CP	mg/kg	14	11	22	30%	Pass			
Mercury	S22-My0027224	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass			
Nickel	S22-My0027224	CP	mg/kg	15	14	8.0	30%	Pass			
Zinc	S22-My0027224	CP	mg/kg	44	40	8.0	30%	Pass			

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

N07 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised by:

Ursula Long	Analytical Services Manager
Dilani Samarakoon	Senior Analyst-Inorganic
Roopesh Rangarajan	Senior Analyst-Organic
Roopesh Rangarajan	Senior Analyst-Volatile
Scott Beddoes	Senior Analyst-Inorganic

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

	HAIN OF CUSTODY Eurofins Environment Testing ABN 50		U	Sydney Laboratory Brisbane Laboratory Perth Leboratory Unit F3 Bid.F 16 Mars Road Lane Cove West NSW 2065 Unit 1 21 Smallwood Place Muranie QLD 4172 Unit 2 91 Leach Highway Kewol 02 9900 8400 EnviroSampleNSW@eurofins.com 07 3902 4600 EnviroSampleQLD@eurofins.com 08 9251 9600 EnviroSampleQLD@eurofins.com										Melbourne Laboratory 6 Monterey Road Dandenong South VIC 3175 03 8564 5000 EnviroSampleVio@eurofins.com													
Company	K2 CONSULTING GROUP		Project	Project № \$T-01-1482					Project Manager KANNAN KALIAPPAN							Sampler(s)				KANNAN KALIAPPAN							
Address	SUITE 222 LEVEL 2, 20B LEX	INGTON DRIVE, BELLA	Project N	lame	Selwy	n Snow	v Resort Pty Lto	I		EDD F ESdat, E	ormat QuIS etc							Hai	nded ov	er by							
Addless	VISTA NSW 2153			, Pb, Zn, Hg)														Em	ail for In	voice		kanr	nano	@k2	2consultinggr	oup.com.au	
Contact Name	KANNAN KALIAPPAN			Cu, Ni, Pb,		otal P)												Em	ail for Re	sults		kanr	nano	@k2	2consultinggr	oup.com.au	
Phone №	61449669559			ı, cr, cu		3,NH3,T													Change co		tainer pe & si		essary,		Required Turn Default will be	naround Time (TAT) = 5 days if not ticked.	
Special Directions			As,Cd	SUITE B10 OPP, Metals (As, Cd, Cr,		Nutrients (Total N, TKN, NOX, NO2, NO3, NH3, Total														35			Ē	Guidelie	□ Same day●		
Purchase Order Quote ID №				AH, OCP, OP		ls (Total N,TK											1	500mL Plastic	250mL Plastic 125mi Plastic	200mL Amber Gia:	40mL VOA vial	500mL. PFAS Bottle	Jar (Glass or HDPE)		 2 days ● 5 days (Stan Other()
Nž	Client Sample ID	Date/Time	Matrix Selid (S) Water (W)	TRH, BTEXN, PAH, OCP,		Nutrien													21	200m	4	500n	Jar (Other (Asbertos AS4964		e Comments ods Hazard Warnin	g
1	ST-01-1482-TP1	10.05.2022/ 09:00	S	X		X																	1			11	
2	ST-01-1482-TP2	10.05.2022/ 09:00	S	×		X														H			1				
3	ST-01-1482-TP3	10.05.2022/ 09:00	5	X		X																	1		<u>a</u> .k.j		
4	ST-01-1482-TP4	10.05.2022/ 09:00	S	×		X																	1				
5	ST-01-1482-TP5	10.05.2022/ 09:00	S	X		X	24																1				
6	ST-01-1482-TP6	10.05.2022/ 09:00	S	X	10	X																	1				
7	ST-01-1482-TP7	10.05.2022/ 09:00	S	X		X																	1				
8	ST-01-1482-TP8	10.05.2022/ 09:00	S	X		X											-						1				
9	ST-01-1482-TP9	10.05.2022/ 09:00	S	X		X																	1				
10	ST-01-1482-TP10	10.05.2022/ 09:00	S	×		X																	1				
Method of		Total Coun	ts	10		10																	10				
Shipment	Courier (#) 🗖 Han	d Delivered		Posta	-	Name	-	_	KALIAPPA	N	Sign	ature	-	-				Date		1	th Ma	y 202	2	Time	11pm	0
Laboratory Use (D - A A I	14	1	_	_	NDL NTL DRW		phature phature		at		-	Da		1.1	t		Time		/	- a)			Temperature Report No.	9.0	AC
Eurofins Environment	Testing Australia Pty Ltd	S-OALL	-(UD (DR	w [INCL]		Submission of sample	1.1	and the second second	e deemed as a	coptanon	Lurofins	Environmen		ate landard Terr	ns and Cane	Stors unes	in agreed	Time otherwise	. A copy	5 Is availe		aquesi,	m	Report Ne	1887	687

🛟 eurofins

Food Testing

AR-22-NV-006188-01

REPORT CODE	AR-22-NV-006188-01		REPORT DATE	16/05/2022
	For the	attention of	Eurofins Environment Tes Analytical Reports 6 Monterey Road Dandenong South 3175 Melbourne	ting Australia Pty Ltd
			AUSTRALIA +61 3 8564 5064 EnviroReportsau@eurofins.com	1
Contact for your orders: Submission Reference:	Ruvini Herath Merged from order cau001-order-887683-22	:0513.xml	Order code: Purchase Order Number:	EUAUTWU-00017335 887683
SAMPLE CODE	726-2022-00017458			
Client Reference: Sample described as: Reception Date: Analysis Starting Date: Sampled Date & Time	22-My0027236 ST-01-1482-TP1 13/05/2022 13/05/2022 10/05/2022 12:00:00		Reception temperature: Analysis Ending Date:	9.8 °C 16/05/2022
	RESULTS		LOQ	
VQ237 Total Coliforms Analysis Starting Date: 13/05 Total Coliforms	5/2022 16:48 1100	MPN/g	1	
SAMPLE CODE	726-2022-00017459			
Client Reference: Sample described as: Reception Date: Analysis Starting Date: Sampled Date & Time	22-My0027237 ST-01-1482-TP2 13/05/2022 13/05/2022 10/05/2022 12:00:00		Reception temperature: Analysis Ending Date:	9.8 °C 16/05/2022
	RESULTS		LOQ	
VQ237 Total Coliforms Analysis Starting Date: 13/05 Total Coliforms	5/2022 16:48 63	MPN/g	1	
SAMPLE CODE	726-2022-00017460			
Client Reference: Sample described as: Reception Date: Analysis Starting Date: Sampled Date & Time	22-My0027238 ST-01-1482-TP3 13/05/2022 13/05/2022 10/05/2022 12:00:00		Reception temperature: Analysis Ending Date:	9.8 °C 16/05/2022
	RESULTS		LOQ	
VQ237 Total Coliforms Analysis Starting Date: 13/05 Total Coliforms	5/2022 16:48 120	MPN/g	1	
Eurofins Food Testing Aust 6 Monterey Road Dandenong South Melbourne VIC 3175 AUSTRALIA Phone +61385645000 https://www.ourofing.com.a	-		Accredited for compliance 17025 - Testing NATA is a signatory to the Recognition Arrangement recognition of the equival medical testing, calibratio proficiency testing schem reference materials produ certificates. Accreditation Number 202	e ILAC Mutual for the mutual ence of testing, n, inspection, e providers and corrs reports and

https://www.eurofins.com.au/foc

🛟 eurofins

Food Testing

	_			
SAMPLE CODE	726-2022-00017461			
Client Reference: Sample described as: Reception Date: Analysis Starting Date: Sampled Date & Time	22-My0027239 ST-01-1482-TP4 13/05/2022 13/05/2022 10/05/2022 12:00:00		Reception temperature: Analysis Ending Date:	9.8 °C 16/05/2022
	RESULTS		LOQ	
VQ237 Total Coliforms Analysis Starting Date: 13/0 Total Coliforms		MPN/g	1	
SAMPLE CODE	726-2022-00017462			
Client Reference: Sample described as: Reception Date: Analysis Starting Date: Sampled Date & Time	22-My0027240 ST-01-1482-TP5 13/05/2022 13/05/2022 10/05/2022 12:00:00		Reception temperature: Analysis Ending Date:	9.8 °C 16/05/2022
	RESULTS		LOQ	
VQ237 Total Coliforms Analysis Starting Date: 13/0 Total Coliforms		MPN/g	1	
SAMPLE CODE	726-2022-00017463			
Client Reference: Sample described as:	22-My0027241 ST-01-1482-TP6			
Reception Date: Analysis Starting Date: Sampled Date & Time	13/05/2022 13/05/2022 10/05/2022 12:00:00		Reception temperature: Analysis Ending Date:	9.8 °C 16/05/2022
Analysis Starting Date:	13/05/2022 13/05/2022			
Analysis Starting Date:	13/05/2022 13/05/2022 10/05/2022 12:00:00 RESULTS	MPN/g	Analysis Ending Date:	
Analysis Starting Date: Sampled Date & Time VQ237 Total Coliforms Analysis Starting Date: 13/0	13/05/2022 13/05/2022 10/05/2022 12:00:00 RESULTS	MPN/g	Analysis Ending Date:	
Analysis Starting Date: Sampled Date & Time VQ237 Total Coliforms Analysis Starting Date: 13/0 Total Coliforms	13/05/2022 13/05/2022 10/05/2022 12:00:00 RESULTS 05/2022 16:48 790	MPN/g	Analysis Ending Date:	
Analysis Starting Date: Sampled Date & Time VQ237 Total Coliforms Analysis Starting Date: 13/0 Total Coliforms SAMPLE CODE Client Reference: Sample described as: Reception Date: Analysis Starting Date:	13/05/2022 13/05/2022 10/05/2022 12:00:00 RESULTS 505/2022 16:48 790 726-2022-00017464 22-My0027242 ST-01-1482-TP7 13/05/2022 13/05/2022	MPN/g	Analysis Ending Date: LOQ 1 Reception temperature:	16/05/2022 9.8 °C

Eurofins Food Testing Australia Pty Ltd 6 Monterey Road Dandenong South Melbourne VIC 3175 AUSTRALIA Phone +61385645000

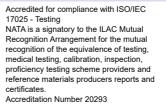
https://www.eurofins.com.au/foc

Accredited for compliance with ISO/IEC 17025 - Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates. Accreditation Number 20293

🛟 eurofins

Food Testing

LIST OF METHODS


VQ237	Total Coliforms: Internal Method, E-Cultural technique (MPN	
	tubes)	J

Di Shen Scientist

Signature

Eurofins Food Testing Australia Pty Ltd 6 Monterey Road **Dandenong South** Melbourne **VIC 3175 AUSTRALIA** Phone +61385645000

https://www.eurofins.com.au/foc

Food Testing

EXPLANATORY NOTE

- test is not accredited
- test is subcontracted within Eurofins group and is accredited
- test is subcontracted within Eurofins group and is not accredited
- test is subcontracted outside Eurofins group and is accredited
- test is subcontracted outside Eurofins group and is not accredited

N/A means Not applicable

Not Detected means not detected at or above the Limit of Quantification (LOQ)

LOQ Limit of Quantification

- U Measurement Uncertainty
- < Less than, \leq Less than or equal to

> Greater than, ≥ Greater than or equal to

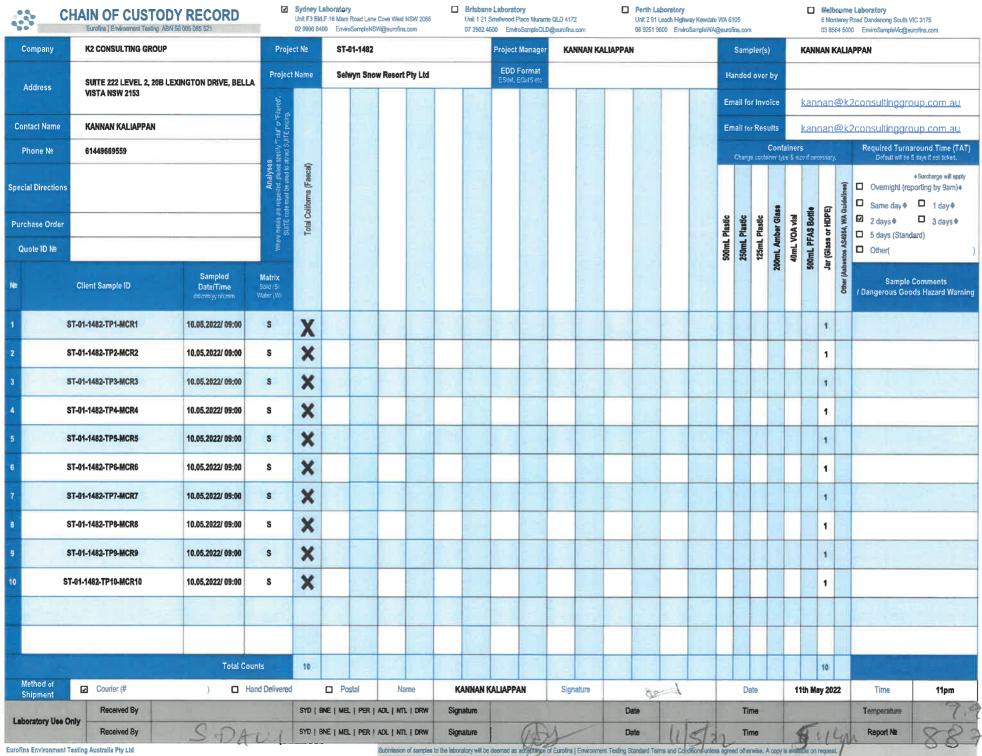
The tests are identified by a 5 digit code, full details can be provided on request.

Information supplied by the client. This information can have an impact on the validity of results.

Samples are tested as received and the results relate only to the sample tested.

Analysis date is reported as the start date of extraction for a method.

The results may not be reproduced except in full, without a written approval from the laboratory.


Eurofins General Terms and Conditions apply.

END OF REPORT

Eurofins Food Testing Australia Pty Ltd 6 Monterey Road Dandenong South Melbourne VIC 3175 AUSTRALIA

Phone +61385645000 https://www.eurofins.com.au/foc Accredited for compliance with ISO/IEC 17025 - Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Accreditation Number 20293

0

e-

K2 Enviro Solutions Suite 1A, Level 2, 802 Pacific Highway Gordon NSW 2768

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention:

Kannan Kaliappan

Report Project name Project ID Received Date 887684-S SELWYN SNOW RESORT PTY LTD ST-01-1482 May 11, 2022

Client Sample ID			ST-01-1482- TP1-BR1
Sample Matrix			Soil
Eurofins Sample No.			S22- My0027247
Date Sampled			May 10, 2022
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons	L.		
TRH C6-C9	20	mg/kg	< 20
TRH C10-C14	20	mg/kg	< 20
TRH C15-C28	50	mg/kg	< 50
TRH C29-C36	50	mg/kg	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5
TRH C6-C10	20	mg/kg	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20
TRH >C10-C16	50	mg/kg	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50
TRH >C16-C34	100	mg/kg	< 100
TRH >C34-C40	100	mg/kg	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100
BTEX			
Benzene	0.1	mg/kg	< 0.1
Toluene	0.1	mg/kg	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2
o-Xylene	0.1	mg/kg	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3
4-Bromofluorobenzene (surr.)	1	%	136
Polycyclic Aromatic Hydrocarbons			
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2
Acenaphthene	0.5	mg/kg	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5
Anthracene	0.5	mg/kg	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5
Chrysene	0.5	mg/kg	< 0.5

Client Sample ID			ST-01-1482- TP1-BR1
Sample Matrix			Soil
Eurofins Sample No.			S22- My0027247
Date Sampled			May 10, 2022
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons		0	
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5
Fluorene	0.5	mg/kg	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5
Naphthalene	0.5	mg/kg	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5
Pyrene	0.5	mg/kg	< 0.5
Total PAH*	0.5	mg/kg	< 0.5
2-Fluorobiphenyl (surr.)	1	%	94
p-Terphenyl-d14 (surr.)	1	%	93
Organochlorine Pesticides	· _ ·		
Chlordanes - Total	0.1	mg/kg	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05
a-HCH	0.05	mg/kg	< 0.05
Aldrin	0.05	mg/kg	< 0.05
b-HCH	0.05	mg/kg	< 0.05
d-HCH	0.05	mg/kg	< 0.05
Dieldrin	0.05	mg/kg	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05
Endrin	0.05	mg/kg	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05
Heptachlor	0.05	mg/kg	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05
Toxaphene	0.5	mg/kg	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1
Dibutylchlorendate (surr.)	1	%	62
Tetrachloro-m-xylene (surr.)	1	%	70
Organophosphorus Pesticides			
Azinphos-methyl	0.2	mg/kg	< 0.2
Bolstar	0.2	mg/kg	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2
Coumaphos	2	mg/kg	< 2
Demeton-S	0.2	mg/kg	< 0.2
Demeton-O	0.2	mg/kg	< 0.2
Diazinon	0.2	mg/kg	< 0.2

Client Sample ID			ST-01-1482- TP1-BR1
Sample Matrix			Soil
Eurofins Sample No.			S22- My0027247
Date Sampled			May 10, 2022
Test/Reference	LOR	Unit	
Organophosphorus Pesticides			
Dichlorvos	0.2	mg/kg	< 0.2
Dimethoate	0.2	mg/kg	< 0.2
Disulfoton	0.2	mg/kg	< 0.2
EPN	0.2	mg/kg	< 0.2
Ethion	0.2	mg/kg	< 0.2
Ethoprop	0.2	mg/kg	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2
Fenthion	0.2	mg/kg	< 0.2
Malathion	0.2	mg/kg	< 0.2
Merphos	0.2	mg/kg	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2
Mevinphos	0.2	mg/kg	< 0.2
Monocrotophos	2	mg/kg	< 2
Naled	0.2	mg/kg	< 0.2
Omethoate	2	mg/kg	< 2
Phorate	0.2	mg/kg	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2
Ronnel	0.2	mg/kg	< 0.2
Terbufos	0.2	mg/kg	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2
Tokuthion	0.2	mg/kg	< 0.2
Trichloronate	0.2	mg/kg	< 0.2
Triphenylphosphate (surr.)	1	%	84
Heavy Metals			
Arsenic	2	mg/kg	< 2
Cadmium	0.4	mg/kg	< 0.4
Chromium	5	mg/kg	14
Copper	5	mg/kg	19
Lead	5	mg/kg	10
Mercury	0.1	mg/kg	< 0.1
Nickel	5	mg/kg	15
Zinc	5	mg/kg	40
	I	1	
% Moisture	1	%	25

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	May 13, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 13, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 13, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	May 13, 2022	14 Days
- Method: LTM-ORG-2010 BTEX and Volatile TRH			
Polycyclic Aromatic Hydrocarbons	Sydney	May 13, 2022	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Organochlorine Pesticides	Sydney	May 13, 2022	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Organophosphorus Pesticides	Sydney	May 13, 2022	14 Days
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS			
Metals M8	Sydney	May 13, 2022	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Sydney	May 11, 2022	14 Days
- Method: LTM-GEN-7080 Moisture			

				Eurofins Environn ABN: 50 005 085 521	Environment Testing Australia Pty Ltd 15 085 521					Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environment Testing NZ Limited NZBN: 9429046024954		
veb: ww	w.eurofins.com.au	Envi	ironment	Testing	Melbourne 6 Monterey Road Dandenong South VIC Phone : +61 3 8564 50 NATA # 1261 Site # 12	1 3175 G 100 P	Girrawee Phone : -	owar Road n NSW 2066 61 2 9900 8400 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 767 Phone : 0800 856 450 IANZ # 1290
	npany Name: Iress:	K2 Enviro So Suite 1A, Lev Gordon NSW 2768		cific Highway			R	rder No.: eport #: hone: ax:	887684 0449 669 559		Received: Due: Priority: Contact Name:	May 11, 2022 5:14 May 13, 2022 2 Day Kannan Kaliappan	РМ
	ject Name: ject ID:	SELWYN SN ST-01-1482	NOW RESOR	T PTY LTD							Eurofins Analytical	Services Manager : L	Irsula Long
		Sa	mple Detail			Moisture Set	Eurofins Suite B10						
Melbo	ourne Laborato	ry - NATA # 12	61 Site # 125	54									
Sydne	ey Laboratory -	NATA # 1261	Site # 18217			Х	Х	1					
	ane Laboratory							-					
	eld Laboratory)				-					
	Laboratory - N nal Laboratory		te # 2370					-					
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID			-					
1	ST-01-1482- TP1-BR1	May 10, 2022	9:00AM	Soil	S22- My0027247	Х	x						
								1					

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

U IIIIU		
mg/kg: milligrams per kilogram	mg/L: milligrams per litre	μg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 mi	lilitres NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

Terms	
APHA	American Public Health Association
COC	Chain of Custody
СР	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
твто	Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Total Recoverable Hydrocarbons						
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank					•	
BTEX						
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3		0.3	Pass	
Method Blank				0.0	1.000	
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene		< 0.5		0.5	Pass	
	mg/kg			1		
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene Nother Plants	mg/kg	< 0.5		0.5	Pass	
Method Blank		1	I I		1	
Organochlorine Pesticides		.0.1		0.4	Daaa	
Chlordanes - Total	mg/kg	< 0.1		0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	<u> </u>	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	<u> </u>	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	<u>├</u> ───	0.05	Pass	
a-HCH	mg/kg	< 0.05	<u>├</u> ───	0.05	Pass	
Aldrin	mg/kg	< 0.05		0.05	Pass	
b-HCH	mg/kg	< 0.05	<u>├</u> ───	0.05	Pass	
d-HCH	mg/kg	< 0.05	<u> </u>	0.05	Pass	
Dieldrin	mg/kg	< 0.05		0.05	Pass	
Endosulfan I	mg/kg	< 0.05		0.05	Pass	
Endosulfan II	mg/kg	< 0.05		0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	ļ	0.05	Pass	
Endrin	mg/kg	< 0.05		0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-HCH (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Organophosphorus Pesticides					
Azinphos-methyl	mg/kg	< 0.2	0.2	Pass	
Bolstar	mg/kg	< 0.2	0.2	Pass	
Chlorfenvinphos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos-methyl	mg/kg	< 0.2	0.2	Pass	
Coumaphos	mg/kg	< 2	2	Pass	
Demeton-S	mg/kg	< 0.2	0.2	Pass	
Demeton-O	mg/kg	< 0.2	0.2	Pass	
Diazinon	mg/kg	< 0.2	0.2	Pass	
Dichlorvos	mg/kg	< 0.2	0.2	Pass	
Dimethoate	mg/kg	< 0.2	0.2	Pass	
Disulfoton	mg/kg	< 0.2	0.2	Pass	
EPN	mg/kg	< 0.2	0.2	Pass	
Ethion	mg/kg	< 0.2	0.2	Pass	
Ethoprop	mg/kg	< 0.2	0.2	Pass	
Ethyl parathion	mg/kg	< 0.2	0.2	Pass	
Fenitrothion	mg/kg	< 0.2	0.2	Pass	
Fensulfothion	mg/kg	< 0.2	0.2	Pass	
Fenthion	mg/kg	< 0.2	0.2	Pass	
Malathion	mg/kg	< 0.2	0.2	Pass	
Merphos	mg/kg	< 0.2	0.2	Pass	
Methyl parathion	mg/kg	< 0.2	0.2	Pass	
Mevinphos	mg/kg	< 0.2	0.2	Pass	
Monocrotophos	mg/kg	< 2	2	Pass	
Naled	mg/kg	< 0.2	0.2	Pass	
Omethoate	mg/kg	<2	2	Pass	
Phorate	mg/kg	< 0.2	0.2	Pass	
Pirimiphos-methyl	mg/kg	< 0.2	0.2	Pass	
Pyrazophos	mg/kg	< 0.2	0.2	Pass	
Ronnel	mg/kg	< 0.2	0.2	Pass	
Terbufos	mg/kg	< 0.2	0.2	Pass	
Tetrachlorvinphos	mg/kg	< 0.2	0.2	Pass	
Tokuthion	mg/kg	< 0.2	0.2	Pass	
Trichloronate	mg/kg	< 0.2	0.2	Pass	
Method Blank			0.2	1 433	
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead		< 5	5	Pass	
	mg/kg				
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
LCS - % Recovery	J.	<u> </u>			
Total Recoverable Hydrocarbons					
TRH C6-C9	%	107	70-130	Pass	
TRH C10-C14	%	86	70-130	Pass	
Naphthalene	%	96	70-130	Pass	
TRH C6-C10	%	105	70-130	Pass	
TRH >C10-C16	%	85	70-130	Pass	
LCS - % Recovery		· ·			
втех					
Benzene	%	100	70-130	Pass	
Toluene	%	102	70-130	Pass	
Ethylbenzene	%	103	70-130	Pass	
m&p-Xylenes	%	103	70-130	Pass	
o-Xylene	%	103	70-130	Pass	
Xylenes - Total*	%	103	70-130	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	92	70-130	Pass	
Acenaphthylene	%	86	70-130	Pass	
Anthracene	%	99	70-130	Pass	
Benz(a)anthracene	%	80	70-130	Pass	
Benzo(a)pyrene	%	89	70-130	Pass	
Benzo(b&j)fluoranthene	%	86	70-130	Pass	
Benzo(g.h.i)perylene	%	100	70-130	Pass	
Benzo(k)fluoranthene	%	85	70-130	Pass	
Chrysene	%	88	70-130	Pass	
Dibenz(a.h)anthracene	%	104	70-130	Pass	
Fluoranthene	%	88	70-130	Pass	
Fluorene	%	102	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	103	70-130	Pass	
Naphthalene	%	92	70-130	Pass	
Phenanthrene	%	91	70-130	Pass	
Pyrene	%	92	70-130	Pass	
LCS - % Recovery		I		1	
Organochlorine Pesticides					
Chlordanes - Total	%	109	70-130	Pass	
4.4'-DDD	%	102	70-130	Pass	
4.4'-DDE	%	91	70-130	Pass	
4.4'-DDT	%	109	70-130	Pass	
a-HCH	%	89	70-130	Pass	
Aldrin	%	93	70-130	Pass	
b-HCH	%	94	70-130	Pass	
d-HCH	%	88	70-130	Pass	
Dieldrin	%	93	70-130	Pass	
Endosulfan I	%	91	70-130	Pass	
Endosulfan II	%	84	70-130	Pass	
Endosulfan sulphate	%	74	70-130	Pass	
Endrin	%	88	70-130	Pass	
Endrin aldehyde	%	84	70-130	Pass	
Endrin ketone	%	71	70-130	Pass	
g-HCH (Lindane)	%	94	70-130	Pass	
Heptachlor	%	97	70-130	Pass	
Heptachlor epoxide	%	109	70-130	Pass	
Hexachlorobenzene	%	104	70-130	Pass	

Tes	st	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code	
Methoxychlor			%	88		70-130	Pass	
LCS - % Recovery							•	
Organophosphorus Pesticides								
Diazinon			%	84		70-130	Pass	
Dimethoate			%	83		70-130	Pass	
Ethion			%	110		70-130	Pass	
Fenitrothion			%	92		70-130	Pass	
Methyl parathion			%	106		70-130	Pass	
Mevinphos			%	86		70-130	Pass	
LCS - % Recovery				·				
Heavy Metals								
Arsenic			%	101		80-120	Pass	
Cadmium			%	95		80-120	Pass	
Chromium			%	95		80-120	Pass	
Copper			%	89		80-120	Pass	
Lead			%	96		80-120	Pass	
Mercury			%	99		80-120	Pass	
Nickel			%	90		80-120	Pass	
Zinc			%	86		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery		Source				Linits	Linits	Code
Total Recoverable Hydrocarbo	าร			Result 1				
TRH C6-C9	S22-My0028126	NCP	%	83		70-130	Pass	
TRH C10-C14	W22-My0011083	NCP	%	78		70-130	Pass	
Naphthalene	S22-My0028126	NCP	%	92		70-130	Pass	
TRH C6-C10	S22-My0028126	NCP	%	81		70-130	Pass	
TRH >C10-C16	W22-My0011083	NCP	%	77		70-130	Pass	
Spike - % Recovery	, , , , , , , , , , , , , , , , , , , ,							
BTEX				Result 1				
Benzene	S22-My0028126	NCP	%	88		70-130	Pass	
Toluene	S22-My0028126	NCP	%	88		70-130	Pass	
Ethylbenzene	S22-My0028126	NCP	%	92		70-130	Pass	
m&p-Xylenes	S22-My0028126	NCP	%	93		70-130	Pass	
o-Xylene	S22-My0028126	NCP	%	94		70-130	Pass	
Xylenes - Total*	S22-My0028126		%	93		70-130	Pass	
Spike - % Recovery					I I			
Polycyclic Aromatic Hydrocarb	ons			Result 1				
Acenaphthene	W22-My0011084	NCP	%	100		70-130	Pass	
Acenaphthylene	W22-My0011084	NCP	%	94		70-130	Pass	
Anthracene	W22-My0011084	NCP	%	108		70-130	Pass	
Benz(a)anthracene	W22-My0011084	NCP	%	87		70-130	Pass	
Benzo(a)pyrene	W22-My0011084	NCP	%	96		70-130	Pass	
Benzo(b&j)fluoranthene	W22-My0011084	NCP	%	95		70-130	Pass	
Benzo(g.h.i)perylene	W22-My0011084	NCP	%	70		70-130	Pass	
Benzo(k)fluoranthene	W22-My0011084	NCP	%	97		70-130	Pass	
Chrysene	W22-My0011084	NCP	%	96		70-130	Pass	
Dibenz(a.h)anthracene	W22-My0011084	NCP	%	86		70-130	Pass	
Fluoranthene	W22-My0011084	NCP	%	88		70-130	Pass	
Fluorene	W22-My0011084	NCP	%	108		70-130	Pass	
Indeno(1.2.3-cd)pyrene	W22-My0011084	NCP	%	84		70-130	Pass	
Naphthalene	W22-My0011084	NCP	%	99		70-130	Pass	
Phenanthrene	W22-My0011084		%	95		70-130	Pass	
	W22-My0011084	NCP	%	94		70-130	Pass	
Pyrene								

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Organochlorine Pesticides				Result 1					
Chlordanes - Total	W22-My0011084	NCP	%	88			70-130	Pass	
4.4'-DDD	W22-My0011084	NCP	%	93			70-130	Pass	
4.4'-DDE	W22-My0011084	NCP	%	89			70-130	Pass	
4.4'-DDT	W22-My0011084	NCP	%	106			70-130	Pass	
a-HCH	W22-My0011084	NCP	%	86			70-130	Pass	
Aldrin	W22-My0011084	NCP	%	90			70-130	Pass	
b-HCH	W22-My0011084	NCP	%	104			70-130	Pass	
d-HCH	W22-My0011084	NCP	%	96			70-130	Pass	
Dieldrin	W22-My0011084	NCP	%	87			70-130	Pass	
Endosulfan I	W22-My0011084	NCP	%	96			70-130	Pass	
Endosulfan II	W22-My0011084	NCP	%	84			70-130	Pass	
Endosulfan sulphate	S21-No14213	NCP	%	75			70-130	Pass	
Endrin	W22-My0011084	NCP	%	91			70-130	Pass	
Endrin aldehyde	S22-My0015184	NCP	%	80			70-130	Pass	
Endrin ketone	W22-My0011084	NCP	%	70			70-130	Pass	
g-HCH (Lindane)	W22-My0011084	NCP	%	110			70-130	Pass	
Heptachlor	W22-My0011084	NCP	%	127			70-130	Pass	
Heptachlor epoxide	W22-My0011084	NCP	%	89			70-130	Pass	
Hexachlorobenzene	W22-My0011084	NCP	%	95			70-130	Pass	
Methoxychlor	S21-No14213	NCP	%	88			70-130	Pass	
Spike - % Recovery									
Organophosphorus Pesticides				Result 1					
Diazinon	W22-My0011084	NCP	%	95			70-130	Pass	
Dimethoate	S21-No14213	NCP	%	121			70-130	Pass	
Ethion	W22-My0011084	NCP	%	96			70-130	Pass	
Fenitrothion	S21-No14213	NCP	%	118			70-130	Pass	
Methyl parathion	S21-No14213	NCP	%	136			70-130	Fail	Q08
Mevinphos	W22-My0011084	NCP	%	89			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	S22-My0017749	NCP	%	87			75-125	Pass	
Cadmium	S22-My0015293	NCP	%	86			75-125	Pass	
Chromium	S22-My0017749	NCP	%	80			75-125	Pass	
Lead	S22-My0017749	NCP	%	84			75-125	Pass	
Mercury	S22-My0015293	NCP	%	87			75-125	Pass	
Zinc	S22-My0015874	NCP	%	75			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons	6			Result 1	Result 2	RPD			
TRH C6-C9	S22-My0028125	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	R22-My0022930	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	R22-My0022930	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	R22-My0022930	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Naphthalene	S22-My0028125	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S22-My0028125	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	R22-My0022930	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	R22-My0022930	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	R22-My0022930	NCP	mg/kg	< 100	< 100	<1	30%	Pass	

Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S22-My0028125	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S22-My0028125	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S22-My0028125	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S22-My0028125	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S22-My0028125	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S22-My0028125	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate	022 Wy0020123	NOI	iiig/kg	< 0.5	< 0.5		0078	1 433	
Polycyclic Aromatic Hydrocarb	ons			Result 1	Result 2	RPD			
Acenaphthene	W22-My0011090	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	W22-My0011090	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	W22-My0011090	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	W22-My0011090	NCP		< 0.5	< 0.5	<1	30%	Pass	
	W22-My0011090	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene			mg/kg						
Benzo(b&j)fluoranthene	W22-My0011090	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	W22-My0011090	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	W22-My0011090	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	W22-My0011090	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	W22-My0011090	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	W22-My0011090	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	W22-My0011090	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	W22-My0011090	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	W22-My0011090	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	W22-My0011090	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	W22-My0011090	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD	l		
Chlordanes - Total	W22-My0011090	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	W22-My0011090	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	W22-My0011090	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	W22-My0011090	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-HCH	W22-My0011090	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	W22-My0011090	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-HCH	W22-My0011090	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-HCH	W22-My0011090	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	W22-My0011090	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	W22-My0011090	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	W22-My0011090	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	W22-My0011090	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	W22-My0011090	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	W22-My0011090	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	W22-My0011090	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-HCH (Lindane)	W22-My0011090	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	W22-My0011090	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	W22-My0011090	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	W22-My0011090	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	W22-My0011090	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	S22-My0030359	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Organophosphorus Pesticides				Result 1	Result 2	RPD			
Azinphos-methyl	W22-My0011090	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Bolstar	W22-My0011090	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorfenvinphos	W22-My0011090	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
0									
Chlorpyrifos	W22-My0011090	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	

Duplicate									
Organophosphorus Pestici	ides			Result 1	Result 2	RPD			
Coumaphos	W22-My0011090	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Demeton-S	W22-My0011090	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Demeton-O	W22-My0011090	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Diazinon	W22-My0011090	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dichlorvos	W22-My0011090	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dimethoate	W22-My0011090	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Disulfoton	W22-My0011090	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
EPN	W22-My0011090	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethion	W22-My0011090	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethoprop	W22-My0011090	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethyl parathion	W22-My0011090	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenitrothion	W22-My0011090	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fensulfothion	W22-My0011090	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenthion	W22-My0011090	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Malathion	W22-My0011090	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Merphos	W22-My0011090	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl parathion	W22-My0011090	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Mevinphos	W22-My0011090	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Monocrotophos	W22-My0011090	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Naled	W22-My0011090	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Omethoate	W22-My0011090	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Phorate	W22-My0011090	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pirimiphos-methyl	W22-My0011090	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pyrazophos	W22-My0011090	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ronnel	W22-My0011090	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Terbufos	W22-My0011090	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tetrachlorvinphos	W22-My0011090	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tokuthion	W22-My0011090	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Trichloronate	W22-My0011090	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S22-My0025867	NCP	mg/kg	7.5	6.3	18	30%	Pass	
Cadmium	S22-My0025867	NCP	mg/kg	1.3	1.0	18	30%	Pass	
Chromium	S22-My0025867	NCP	mg/kg	22	20	13	30%	Pass	
Copper	S22-My0025867	NCP	mg/kg	460	400	15	30%	Pass	
Lead	S22-My0025867	NCP	mg/kg	290	250	15	30%	Pass	
Mercury	S22-My0025867	NCP	mg/kg	0.5	0.4	12	30%	Pass	
Nickel	S22-My0025867	NCP	mg/kg	11	9.1	15	30%	Pass	
Zinc	S22-My0025867	NCP	mg/kg	410	350	16	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S22-My0027018	NCP	%	23	21	9.0	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs
	The matrix snike recovery is outside of the recommended accentance criteria. An accentable recovery was obtained for the laboratory control sample indicating a sample matrix

The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference.

Authorised by:

Ursula Long	Analytical Services Manager
Gabriele Cordero	Senior Analyst-Metal
Roopesh Rangarajan	Senior Analyst-Volatile
Roopesh Rangarajan	Senior Analyst-Organic

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service
- Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

pany	K2 CONSULTING GROUP	3	Project	N≌	ST-01-1482 Project Manager KANNAN KALIAPPAN							AN Sampler(s)					03 8564 5000 EnviroSampleVic@eurofins.com									
		LEXINGTON DRIVE, BELLA	Project N	ame	Selwyn	Snow I	Resort Pty	Ltď			D Format							Hai	nded o	ver by						
Address	VISTA NSW 2153	LEXINGTON DRIVE, BELLA		Zn, Hg)														Ema	ail for I	nvoice		kan	nan	@k2	2consultinggro	up.com.au
ntact Name	KANNAN KALIAPPAN			Ni, Pb, 2	E												Ema	ail for R	Results		kan	nan	@k2	2consultinggro	up.com.au	
Phone №	61449669559			, Cr, Cu,															Change o		ntainers type & siz		cessary			round Time (TAT) 5 days if not ticked.
ial Directions			As,Cd	UITE B10 , Metals (As, Cd																2			a	kuidelines)	 Overnight (rep Same day ● 	
:hase Order iote ID №				S AH, OCP, OPP														500mL Plastic	250mL Plastic	125mL Plastic 200mL Amber Glass	40mL VOA vial	500mL PFAS Bottle	Jar (Glass or HDPE)	(Asbertos AS4964, WA Guidelines)	 2 days ● 5 days (Stands Other(
	Client Sample ID	Date/Time	Matrix Solid (S) Water (W)	SUITE B10 TRH, BTEXN, PAH, OCP, OPP, Metals (As, Cd, Cr, Cu, Ni, Pb,														G	~	200n	¥	5001	Jar (Other (Asbest		Comments ds Hazard Warning
8	ST-01-1482-TP1-BR1	10.05.2022/ 09:00	s	X																			1			St. c - 11
242																								B		
									-																	
								8																		
														ī it												
					-																					
			11-1												E -1											1.5.6
									-																, -7	
		Total Cour	Its	10																			1			
lethod of Shipment	Courier (#) 🗖 Han	d Delivered		Postal		Name		KANNA	N KALIAP	PAN	Sign	ature		822	-t			Date	_	11	th Ma	ıy 202	2	Time	11pm
oratory Use On	Received By			syd BNA	e Mel. P	er ad	LINTLID	w s	lignature					Da	ate			2	Time						Temperature	
	Received By			syd BN	e (mel) p	er ad	IL NTL D	w s	lignature					Da	ate				Time					1	Report Ne	av.

AUSTRALIAN SAFER ENVIRONMENT & TECHNOLOGY PTY LTD

ABN 36 088 095 112

Our ref : ASET101135 / 104315 / 1 - 10 Your ref : ST-01-1482 – 213A Kings Cross Road Cabramurra NSW 2629 NATA Accreditation No: 14484

12 May 2022

K2 Consulting Group Suite 1A Level 2 802 Pacific Highway Gordon NSW 2072

Attn: Mr Kannan Kaliappan

Dear Kannan

Accredited for compliance with ISO/IEC 17025 - Testing.

Asbestos Identification

This report presents the results of ten samples, forwarded by K2 Enviro Solutions on 12 May 2022, for analysis for asbestos. This report supersedes the report issued earlier today.

1.Introduction: Ten samples forwarded were examined and analysed for the presence of asbestos.

2. Methods : The samples were examined under a Stereo Microscope and selected fibres were analysed by Polarized Light Microscopy in conjunction with Dispersion Staining method (Australian Standard AS4964 - 2004 and Safer Environment Method 1 as the supplementary work instruction) (Qualitative Analysis only).

3. Results : Sample No. 1. ASET101135 / 104315 / 1. ST-01-1482 - TP1 - ASB1. Approx dimensions 6.0 cm x 6.0 cm x 1.4 cm The sample consisted of a mixture of clayish sandy soil, organic fibres, shale, stones and plant matter No asbestos detected.

> Sample No. 2. ASET101135 / 104315 / 2. ST-01-1482 – TP2 - ASB2. Approx dimensions 6.0 cm x 6.0 cm x 1.6 cm The sample consisted of a mixture of clayish sandy soil, organic fibres, shale, stones and plant matter No asbestos detected.

> Sample No. 3. ASET101135 / 104315 / 3. ST-01-1482 – TP3 - ASB3. Approx dimensions 6.0 cm x 6.0 cm x 1.7 cm The sample consisted of a mixture of clayish sandy soil, organic fibres, shale, stones and plant matter No asbestos detected.

Sample No. 4. ASET101135 / 104315 / 4. ST-01-1482 – TP4 - ASB4. Approx dimensions 6.0 cm x 6.0 cm x 2.8 cm The sample consisted of a mixture of clayish sandy soil, organic fibres, shale and stones. No asbestos detected.

Sample No. 5. ASET101135 / 104315 / 5. ST-01-1482 – TP5 - ASB5. Approx dimensions 6.0 cm x 6.0 cm x 1.8 cm The sample consisted of a mixture of clayish sandy soil, organic fibres, shale, stones and plant matter. No asbestos detected.

SUITE 710 / 90 GEORGE STREET, HORNSBY NSW 2077 – P.O. BOX 1644 HORNSBY WESTFIELD NSW 1635 PHONE: (02) 99872183 FAX: (02)99872151 EMAIL: info@ausset.com.au WEBSITE: www.Ausset.com.au

Sample No. 6. ASET101135 / 104315 / 6. ST-01-1482 – TP6 - ASB6.

Approx dimensions 6.0 cm x 6.0 cm x 2.0 cm

The sample consisted of a mixture of clayish sandy soil, organic fibres, shale, stones and plant matter.

No asbestos detected.

Sample No. 7. ASET101135 / 104315 / 7. ST-01-1482 - TP7 - ASB7.

Approx dimensions 6.0 cm x 6.0 cm x 1.6 cmThe sample consisted of a mixture of clayish sandy soil, shale, organic fibres, stones and plant matter.

No asbestos detected.

Sample No. 8. ASET101135 / 104315 / 8. ST-01-1482 – TP8 - ASB8.

Approx dimensions 6.0 cm x 6.0 cm x 1.4 cmThe sample consisted of a mixture of clayish sandy soil, organic fibres, shale, stones and plant matter.

No asbestos detected.

Sample No. 9. ASET101135 / 104315 / 9. ST-01-1482 – TP9 - ASB9. Approx dimensions 6.0 cm x 6.0 cm x 2.2 cm The sample consisted of a mixture of clayish sandy soil, organic fibres, shale, stones and plant matter. No asbestos detected.

Sample No. 10. ASET101135 / 104315 / 10. ST-01-1482 - TP10 - ASB10. Approx dimensions 6.0 cm x 6.0 cm x 2.5 cm The sample consisted of a mixture of clayish sandy soil, organic fibres, stones, shale and plant matter. No asbestos detected.

Reported by,

Mahen De Silva. BSc, MSc, Grad Dip (Occ Hyg) Occupational Hygienist / Approved Identifier. Approved Signatory

Accredited for compliance with ISO/IEC 17025 -Testing.

The results contained in this report relate only to the sample/s submitted for testing. Australian Safer Environment & Technology accepts no responsibility for whether or not the submitted sample/s is/are representative. Results indicating "No asbestos detected" indicates a reporting limit specified in AS4964-2004 which is 0.1g/ Kg (0.01%). Any amounts detected at assumed lower level than that would be reported, however those assumed lower levels may be treated as "No asbestos detected" as specified and recommended by AS4964-2004. Trace / respirable level asbestos will be reported only when detected and trace analysis have been performed on each sample as required by AS4964-2004. When loose asbestos fibres/ fibre bundles are detected and reported that means they are larger handpicked fibres/ fibre bundles, and they do not represent respirable fibres. Dust/soil samples are always subjected to trace analysis except where the amounts involved are extremely minute and trace analysis is not possible to be carried out. When trace analysis is not performed on dust samples it will be indicated in the report that trace analysis has not been carried out due to the volume of the sample being extremely minute.

LIENT: Se	wyn Snow Resort Pty Ltd		TURNAROUN	D REQUIREMENTS :	URGENT							*		1	
FFICE:			1		UNGLIT								6	IQ,	ENT.
ROJECT N	D: ST-01-1482		SAMPLED ON	: 10.	.05.2022									10	FA.
DDRESS: 2	13A Kings Cross Road, Cabramurra,	NSW 2629			1										SNT .
	ANAGER: Kannan Kaliappan	CONTACT P	H: 0449669559) 	1										
	annan Kaliappan		T /		_	SHED BY: I		RE	CEIVED BY:			RELINQ	UISHED BY:		RECEIVED BY:
	to lab? (YES / NO) to to (will default to PM if no other addre		T (or default):	10 COM AU		E: 11.05.202		DA	TE/TIME:			DATE/TI	ME-		RECEIVED BY: //m DATE/TIME: 12/5/22 8
	e to (will default to PM if no other addres		and the second second second			C. 11.00.201	2, 13.00 113	DA				DATEM			12/5/22 8
	SPECIAL HANDLING/STORAGE OR														140/220
			All and a second		2 - 42										T
	BADRIX BOIL VINTER	CHETCHILE CHET RUMAN OF TATESTIC		CONTANCE	PORTION					ANALYSIS R	REQUIRED	- <u>t</u>			Additional Information
S no	SAMPLE ID	DATE / TIME	MATRIX	CONTAINER INFORMAT	TION	TOTAL CONTAINERS	Asbestos in soil (presence/absence)	Asbestos Cement Sheet (presence / absence)	Asbestos in Vinyl (presence/absence)	Asbestos Dust (presence/absence)	Asbestos in Bitumen (present / absent)	Asbestos in insulation (Present / absent)	Asbestos in Material		Comments on likely contaminant lavela, ditutions or samples requiring specific QC analysis etc.
1	ST-01-1482-TP1-ASB1	10.05,2022; 09:00 hrs	Soil	Zip Lock Bag		1	X								
2	ST-01-1482-TP1-ASB2	10.05.2022; 09:00 hrs	Soil	Zip Lock Bag		1	х								
3	ST-01-1482-TP1-ASB3	10.05.2022; 09:00 hrs	Soil	Zip Lock Bag		1	x								-
4	ST-01-1482-TP1-ASB4	10.05.2022; 09:00 hrs	Soil	Zip Lock Bag		1	×								
5	ST-01-1482-TP1-ASB5	10.05.2022; 09:00 hrs	Soil	Zip Lock Bag		1	x								
6	ST-01-1482-TP1-ASB6	10.05.2022; 09:00 hrs	Soil	Zip Lock Bag		1	x								
7	ST-01-1482-TP1-ASB7	10.05.2022; 09:00 hrs	Soil	Zip Lock Bag		1	x								
8	8T-01-1482-TP1-ASB8	10.05.2022; 09:00 hrs	Soil	Zip Lock Bag		1	×								
9	ST-01-1482-TP1-ASB9	10.05.2022; 09:00 hrs	Soil	Zip Lock Bag		1	x					6	120	121	NV IZ M
10	ST-01-1482-TP1-ASB10	10.05.2022; 09:00 hrs	Soil	Zlp Lock Beg		1	×					n			had haven
												80	1 2	MAY	2822
														/	
													8¥:	··· / ···	
														1 IV	